Funding opportunities

Trophoblast differentiation of human ES cells.

Funding Type: 
SEED Grant
Grant Number: 
RS1-00283
Principle Investigator: 
Funds requested: 
$748 240
Funding Recommendations: 
Recommended if funds allow
Grant approved: 
Yes
Public Abstract: 
Statement of Benefit to California: 
Review Summary: 
SYNOPSIS: This project is focused on deriving trophoblast stem (TS) cells from hESC. A key feature of the trophoblast lineage is the expression of various intermediate filament (IF) gene products (e.g., keratins) and the PI has noted that hES cells already express some of these genes, in contrast to mESC, which do not express them until differentiation. The PI will use information from the mouse system to test the ability of defined regulatory pathways to stimulate enrichment of TS cells. In Aim 1, immunohistochemistry (IHC) will be used to describe the relative expression levels in a variety of hESC lines for IF genes (K7, K8, K9, K18, various others). Since some of these genes (K8, K18, K19) are repressed during neural progenitor cell development, the PI will also characterize the chromatin structure of the promoters by ChIP analysis of acetylated histones, comparing ES and NP cells derived from them. This should confirm active chromatin domains in the hESC lines. In Aim 2, a Cdx2:GFP gene will be transduced by lentivirus to generate reporter ESC lines that will later assist in monitoring trophoblast differentiation under a variety of conditions. SIGNIFICANCE AND INNOVATION: The studies have relevance to the syndrome of preeclampsia, which occurs in hypoxic placenta and may often be due to poor development or maturation of trophoblast derivatives. The project is innovative at moving what is known in the mouse system into the hESC system, but the approaches are fairly well established. The observation from the preliminary data that at least one of these cytoskeletons seems to be expressed in a subset of cells could be significant. Thus, the proposed studies under Specific Aim 1 to look at the consistency of expression across different lines has the potential to yield important results regarding clonality and consistency. The second area of focus under Specific Aim 1 is to do a detailed analysis of the factors that regulate the expression of the proposed cytoskeleton proteins. The identification of negative regulatory proteins expressed in the neuronal progenitor cells could provide an important means to modulate the differentiation pathways. These are important questions to address. Regarding Specific Aim 2, assuming they can indeed differentiate the human ESC cultures into trophoblast, this area of investigation seems highly innovative and of (potentially) great significance towards addressing an issue that is of significant medical concern. STRENGHTS: The PI is an expert in the biology of trophoblast cells and in particular with IF gene function and regulation. It is a major strength that he is already working with the hES cells and generating relevant preliminary data. The study is for the most part well focused, feasible, and appropriate in scope. The comparison of different ESC lines, while descriptive, may be enlightening and provide novel insight into functional capabilities. The environment is also excellent. The investigators have supplied preliminary data to support the work -- preliminary studies on cytoskeleton expression by IHC show that for K7 there is heterogeneous expression among the culture. These data strongly support the proposed studies in Aim 1. Likewise, for Aim 2, the investigators provide preliminary data to show that the proposed approach of using reporter constructs that are Ets sensitive do work; they also have a number of other reagents already prepared for the various gene expression work they plan to perform. The investigator appears to have performed analogous studies looking at the role of Ets2 in other cell culture systems (mostly mammary tumors), and therefore, is knowledgeable in the pathway, allowing him to use well-defined strategies for modulating gene expression in this pathway, and to then look at the consequences on the differentiative state of the ESC cultures or its derivatives. WEAKNESSES: The author’s work on the trophoblast stem cells is based on a published report that human ES cells can be driven to differentiate into trophoblasts with BMP4, but this is not their work and based on the preliminary data shown they have not repeated this work. Yet, they assume that they will have no problem seeing the same effect. Since all of the work in Aim 2 is based on their ability to drive differentiation into TS cells, this is the most risky thing about their proposal. What if they can't repeat the published study, either due to subtle differences in ES lines, or other unexplained/uncontrolled factors? It would be useful to comment on how the studies will proceed once the protocols for generating TS are optimized, and to see a consideration of benchmarks or definition of “optimized”. Regarding the attempts to modulate the pathway, the investigators do not discuss any studies that might distinguish between whether the down-modulation of these particular cytoskeletons in neural progenitor cells is cause or effect. Also, it is unclear (i.e., reviewers could not find evidence) whether the expression array for negative regulatory proteins is in existence, or has been used previously (described under #2 for Research and Design Methods). In general, the experiments analyzing promoter “repression state” in neural progenitor cells is a bit off target and may detract from productivity relevant to TS. While it will confirm the active state of the TS promoters, it is not clear why chromatin structure is an important issue, as long as the keratin genes are expressed. DISCUSSION: This is a well-written proposal, and the applicant has thoughtfully considered what is known about trophoblast stem cell differentiation in the mouse and believes that expression in hESC of some of the genes characteristic of the trophoblast lineage that are not expressed in mESC may make hESC more amenable to differentiation along a trophoblast lineage. This is still very much a pilot project, and is a major risk in that its whole premise is based on a published report from another lab. There is no preliminary data to support the work with the applicant's conditions and cell line. Reviewers had trouble fully understanding the scientific aims. Aim 2 is descriptive, and the nature/availability of the arrays to be used is not described. Also, what is the negative control? As proposed, the repression state experiments are a tremendous amount of work and a distraction from the main project. One suggestion is to use the down-regulation of these cytoskeletal proteins in NPCs to address the question of whether the affect is direct or indirect.
Conflicts: 

© 2013 California Institute for Regenerative Medicine