ES-Derived Cells for the Treatment of Alzheimer's Disease

ES-Derived Cells for the Treatment of Alzheimer's Disease

Funding Type: 
New Faculty I
Grant Number: 
Award Value: 
Disease Focus: 
Alzheimer's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 

Year 1

Alzheimer’s disease remains the most common cause of dementia in California and the US with more than 5 million cases nationwide, a number that is expected to exceed 13 million by 2050 if treatments are not developed. We, and others, showed that T cells responses to beta-amyloid can provide beneficial effects in mouse models of this disease. However, a clinical trial of Abeta vaccination was halted due to immune cell infiltration of the meninges and consequent brain swelling. Most of the other patients seemed to benefit from the vaccination, but the uncontrolled robustness of the immune response to vaccination makes those trials unfeasible. This project aims to refine and control Abeta-specific T cell responses using antigen presenting cells derived from human embryonic stem cells (hESC). If we are successful, then we would be able to deliver only the beneficial cells responsible for the beneficial effects, and do so in a controlled manner so as to avoid encephalitogenic complications.

Year 2

During the first 4 years of this CIRM grant, my lab developed novel methods to assess adaptive immune responses to the Alzheimer’s-linked peptide, amyloid-beta/Abeta, in human blood samples. This technique relies on the use of pluripotent stem cells to produce specific immune-modulating cells in a complicated differentiation process that takes ~50 days. Over the past year we have found that this technology can employ both human embryonic stem cells and induced-pluripotent stem cells (iPSC), the latter of which were developed in my lab through other funding sources. We have now confirmed that this method provides consistent and robust readouts. Over the past year we have moved into the clinical phase of this project and assessed these responses in over 60 human subjects. Control subjects (not affected by Alzheimer’s disease) were recruited from the university community. Initially, we looked for age-dependent changes in these responses with a cohort of >50 research subjects who ranged in age from 20-88 years. Interesting patterns emerged from that study, which are currently being prepared for publication, and will remain confidential until publication; further details are not provided in this report as it will become public record. Several Alzheimer’s patients have also been assessed. We recently entered into an agreement with a local Alzheimer’s assessment center that will allow us to expand our study by including subjects with a presumptive diagnosis of Alzheimer’s disease, as well as individuals with mild cognitive impairment (MCI) and other causes of dementia such as Fronto-temporal Dementia, Dementia with Lewy bodies and Vascular Dementia. It will be interesting to determine if the assay we have developed will be able to distinguish subjects with developing Alzheimer's pathology from those with other causes of dementia, using a small blood sample. Overall, our progress is on-track for this project to be completed at the end of year 5, with many more subject samples analyzed than were originally proposed. In the approved grant it was proposed that spleen samples from 6-8 organ donors would be assessed, but as we developed this technology it became clear that we can detect these responses using 20 mL whole blood samples from living human subjects. At present, we have used our assay to assess more than 60 human subjects – 10 times what was proposed - and by this time next year we estimate that number will double. Information gained from this research is providing exciting new insights into immune changes associated with Alzheimer’s disease. The Western University of Health Sciences is engaged in patent processes to secure intellectual property and commercialize this technology.

Year 3

Alzheimer’s disease affects more than 5.5 million people in the USA. Problems with memory correspond with the appearance of insoluble plaques in certain brain regions, and these plaques large consist of a peptide called, amyloid-beta. For more than a decade it has known that certain immune responses to amyloid-beta improve memory in mouse models of Alzheimer’s disease, yet in humans little is known about how those responses normally occur or if they may a beneficial therapeutic strategy. In this grant we have used stem cell technology to pioneer a new method to isolate and characterize those cells using only 20 cc of whole blood from a variety of human subjects. We have found that these immune responses increase dramatically in when high-risk people are in their late 40’s and early 50’s. Those responses may provide protection against Alzheimer’s disease progression as they diminish as memory problems begin to develop. This technology will be developed as an early diagnostic test for Alzheimer's disease with private equity partners. A patent application covering this technology was submitted by the Western University of Health Sciences.

Year 4

This CIRM grant allowed my group to translate findings from our Alzheimer’s research from mouse to man. Over several years my group, an others, showed that boosting T cell responses to a peptide found in the plaques of Alzheimer’s patients could reduce disease pathology and memory problems in mouse models of this disease. Interestingly, at least some people carry T cells in their immune system, but it was unknown who has them or if they are lost over the course of Alzheimer’s disease. In this CIRM-funded project we used stem cells to develop a new technology, called CD4see, to identify and quantify those T cells using a small sample of human blood, roughly the same amount taken for a standard blood panel. After years of development and testing of CD4see, we used it to look for and quantify those plaque-specific T cells in over 70 human subjects. We found an age-dependent decline of Aβ-specific CD4+ T cells that occurred earlier in women than in men. Men showed a 50% decline around the age of 70, but women reached the same level before the age of 60. Notably, women who carried the AD risk marker apolipoproteinE-ε4 (ApoE4) showed the earliest decline, with a precipitous drop that coincided with an age when menopause usually begins. This assay requires a sample of whole blood that is similar to standard blood panels, making it suitable as a routine test to evaluate adaptive immunity to Aβ in at-risk individuals as an early diagnostic test for Alzheimer’s disease. In future applications CD4see can be used to isolate those cells in the lab, expand them to millions of cells, and then return them back to the same person--our earlier mouse studies showed those T cells counter Alzheimer’s pathology and memory impairment, so this technology may lead to a new therapeutic approach. I am grateful to CIRM and California taxpayers for supporting young scientists and funding innovative research.

© 2013 California Institute for Regenerative Medicine