Human stem cell derived oligodendrocytes for treatment of stroke and MS

Human stem cell derived oligodendrocytes for treatment of stroke and MS

Funding Type: 
Comprehensive Grant
Grant Number: 
Award Value: 
Disease Focus: 
Multiple Sclerosis
Neurological Disorders
Immune Disease
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 

Year 1

Over the last year we have succeeded in generating nearly pure cultures of human ES cell derived oligodendrocyte precursors from two different human ES cell lines. We are now also testing whether manipulation of transcription factors or morphogenic signaling pathways regulates the ability of these cells to differentiate into oligodendrocytes that produce myelin. We are testing these cells in a rodent stroke model to determine if they survive in the region of the stroke. If they survive, we will test whether they help to treat the strokes. We are also testing cells in transplantation into a developmental ischemia model and a model for genetic failure to produce myelin.

Year 2

Our proposal centers on developing novel effective methods to generate oligodendrocytes from human ES cells. We focus on identifying signaling pathways (using studies in rodent neural stem cells) that can be adapted to human ES cells and used to regulate the efficiency of oligodendrocyte specification and differentiation from human ES cells. We then hope to use these human ES cell derived oligodendrocytes to determine whether transplantation of these cells is feasible in well characterized animal models associated with damage to oligodendrocytes. Over the last year we have made major progress toward these goals. First, we have completed and submitted for publication two studies identifying the roles of Wnts and Sox10 in regulating the development of oligodendrocytes both during brain development and during stem cell differentiation in vitro. One of these papers is in the final stages of consideration after revision and the other is submitted awaiting reviews. Second, we have developed a novel method for culturing human ES cell derived oligodendrocyte precursors. This is based on modifications of published methods but leads to greatly enhanced purity of final oligodendrocytes in our cultures (about 80% oligodendrocytes and 20% astrocytes). We have used this culture approach to address the role of sonic hedgehog in the differentiation of oligodendrocytes from human oligodendrocyte progenitors and have identified sonic hedgehog as a major regulator of oligodendrocyte differentiation and myelin production. This is quite distinct from rodent neural cells where sonic hedgehog doesn't appear to have this function. This will provide a novel therapeutic target to affect oligodendrocyte maturation and regeneration in disease models and will be of great utility for studying the function of mature human oligodendrocytes. This work is in preparation for submission. Third, we have made some significant progress in our transplantation studies. We completed studies transplanting human ES derived oligodendrocyte progenitors into a rodent model of focal stroke and found that at 1 week post stroke and 2 weeks post stroke the survival of oligodendrocytes from these transplants is very minimal. Thus, we have discontinued this work because of this feasibility issue. We have moved on to examine studies of transplantation into newborn rodents with hypoxic injury and with dysmyelination becahse of the shiverer mutation. The progress here is good. The hypoxia model we are using is a chronic (up to 1 week) exposure to low oxygen tension of P2 mice, which is known to cause oligodendrocyte injury. We are initially characterizing the injury to oligodendrocytes at various durations of hypoxic exposure so that we can identify the best time point to transplant our cells into the brains. We are using immunodeficient mice to decrease the chances of rejection of the transplanted cells. In addition, we are generating a mouse colony with the shiverer allele combined with an immunodeficiency allele in order to be able to transplant cells in this model. In the meantime, we are determining the survival of transplanted cells into newborn mice to identify technical factors that will need to be overcome to allow efficient transplantation and to determine if our human cells participate in differentiation in these mice. Preliminarily we have found good survival of oligodendrocyte lineage cells after transplantation into P2 mice and the expression of myelin antigens after an appropriate period of development in vivo. This is very encouraging.

Year 3

In the last year we have continued our efforts to transplant oligodendrocyte progenitors obtained by differentiation of human ES cells. Our progress in this area has been mixed because of substantial technical hurdles in consistent production of the oligodendrocyte progenitors from frozen stocks of cells. This will necessitate a no-cost extension for a small portion of the work to allow completion of the analysis of already transplanted animals. We have made substantial progress as well in showing that these cells are capable of myelinating axons effectively in vitro. In addition, we've found that the human ES derived oligodendrocytes are capable of myelinating artificial nanofibers in vitro as well. This may serve as a useful platform in the future for drug discovery or other high throughput studies. We have also identified an important novel molecular regulator of oligodendrocyte number and development and this work will continue into the future.

Year 4

In this NCE period we were completing studies with animals that had received neonatal ischemic injury and were implanted with human ES cell derived cells of the oligodendrocyte lineage. These experiments showed that the cells survive and have oligodendrocyte lineage markers for three weeks post injection. Longer survival experiments are still ongoing.

© 2013 California Institute for Regenerative Medicine