Neuroprotection to treat Alzheimer's: a new paradigm using human central nervous system cells

Neuroprotection to treat Alzheimer's: a new paradigm using human central nervous system cells

Funding Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05416
Award Value: 
$90,101
Disease Focus: 
Alzheimer's Disease
Neurological Disorders
Status: 
Closed
Public Abstract: 
Alzheimer’s disease (AD) is an incurable disorder that affects memory, social interaction and the ability to perform everyday activities. In the USA alone, the number of AD patients aged 65 and older has surpassed 5 million and that number may triple by 2050. Annual health care costs have been estimated to exceed 172 billion dollars, but do not reflect loss of income and stress caused to caregivers. Therefore, there is great hope for new therapies that will both improve symptoms and alleviate suffering. There are few FDA-approved medications to treat AD and none is capable of preventing, delaying onset or curing AD. Current medications mostly tend to temporarily slow the worsening of AD-associated symptoms such as sleep disturbances, depression and memory loss/disorientation. Pharmaceutical companies continue to develop new types of drugs or combination therapies that can better treat the symptoms or improve the quality of life of AD patients. There is also an ongoing effort to discover novel drugs that may prevent, reverse, or even cure AD. Unfortunately, the number of clinical studies addressing the possible benefit of such drugs is low, and agents that have shown initial promise have failed at later stage clinical testing, despite convincing preclinical data. There are ongoing studies in AD patients using vaccines and other biological compounds but it is unclear when data from these new trials will be available and more importantly, whether they will be successful. The need for divergent and innovative approaches to AD is clearly suggested by the failure of experimental drugs. Our proposal is to use brain stem cells to treat AD. This is a completely different approach to the more standard therapies described above such as drugs, vaccines, etc., and one that we hope will be beneficial for AD patients as a one-time intervention. AD is characterized by a dysfunction and eventual loss of neurons, the specialized cells that convey information in the brain. Death or dysfunction of neurons results in the characteristic memory loss, confusion and inability to solve new problems that AD patients experience. It is our hope that stem cells transplanted into the patient’s brain may provide factors that will protect neurons and preserve their function. Even a small improvement in memory and cognitive function could significantly alter quality of life in a patient with AD.
Statement of Benefit to California: 
Of the 5.4 million Americans affected with AD, 440,000 are California residents and, according to the Alzheimer’s Association, this number is projected to increase between 49.1 - 81.0% (second highest only to Northwestern states) between 2000 and 2025. Given that California is the most populous state, AD’s impact on state finances is proportionally high and will only increase as the population ages and AD incidence increases. The dementia resulting from this devastating disease disconnects patients from their community and loved ones by eroding memory and cognitive function. Patients gradually lose their ability to drive, work, cook and even carry out simple everyday tasks, and become totally dependent on others. The quality of life of AD patients is hugely affected and the burden on their families and caregivers is very costly to the state of California. There is no cure for AD and no way to prevent it. Most approved therapies only address symptomatic aspects of AD and disease modifying drugs are currently not available. By enacting Proposition 71, California voters acknowledged and supported the need to investigate the use of novel stem cell based therapies to treat currently incurable diseases such as AD. Our goal is to leverage our proven expertise in developing neural stem cell based therapies for human neurodegenerative disorders and apply it to AD. We propose that neural stem cell transplantation into select regions of the brain will have a beneficial impact on the patient. If successful, a single intervention may be sufficient to delay or stop progression of neuronal degeneration and preserve functional levels of cognition and memory. In a disease such as AD, any therapy that can exert even a modest impact on the patient’s ability to carry out some daily activities will have an exponential positive effect not only on patients but also on families, caregivers and the health care system. The potential economic impact of such type of therapeutic intervention for California could be tremendous, not only by reducing the high costs of care but also by becoming a vital world center for stem cell interventions in AD.
Progress Report: 

Year 1

Alzheimer's disease (AD) is an incurable disorder that affects memory, social interaction, and the ability to perform everyday activities. The number of AD patients older than 65 has surpassed 5 million in the US and 600,000 in California, numbers that may triple by 2050. Annual health care costs related to AD have been estimated to exceed $172 billion in the US, even without reflecting either the loss of income or the physical and emotional stress experienced by caregivers. Efforts to discover novel and effective treatments for AD are ongoing, but unfortunately, the number of active clinical studies is low and many traditional approaches have failed in clinical testing. There is a great need for new therapies that will both improve symptoms and alleviate suffering. AD is characterized by the dysfunction and eventual loss of neurons, the specialized cells that convey information in the brain. Death or dysfunction of neurons results in the characteristic memory loss, confusion, and inability to solve new problems that AD patients experience. StemCells Inc. is embarking on an initiative to evaluate the use of its proprietary human neural stem cells to treat AD. We believe that neural stem cells transplanted into a patient’s brain may protect neurons and preserve their function. This represents an entirely new approach to standard therapeutic drug development for AD, which has so far resulted in drugs that only temporarily alleviate symptoms in some patients but that do not slow or change the course of the disease. We envision using neural stem cells as a one-time intervention that will improve memory and cognitive function in AD patients. Even a modest improvement in these symptoms could significantly alter the quality of life of a patient with AD. StemCells Inc. received a Disease Team Planning (DTP) award from CIRM to establish a Disease Team for AD, and to begin organizing the activities required to submit a Disease Team Therapy Development (DTTD) award. We are reporting now on the successful completion of this DTP award. The main deliverables were (i) submission of a DTTD award application and (ii) development of a four year research plan that contemplates an Investigational New Drug (IND) submission to the FDA for the clinical study of neural stem cells in patients with AD, within four years. To begin evaluating its proprietary human neural stem cells as a potential therapy for AD, StemCells Inc. and its collaborators from UC Irvine needed to first design IND-enabling safety and efficacy studies to test these stem cells in animal models relevant for AD. The DTP funding from CIRM helped support a series of telephone, email and face-to-face meetings over the last 6 months, between investigators at UCI and StemCells Inc., to present and evaluate existing data on neural stem cells and to share information about AD in order to design pilot and definitive efficacy and safety studies. During this time, the team also discussed the logistical details required to conduct these studies. After a draft research plan had been outlined, StemCells Inc. and its principal collaborator at UCI, Dr. Frank LaFerla, enlisted the help of various experts in the field of AD, including both clinicians and academic scientists, to evaluate this plan. These experts attended a meeting at UCI and provided input into the experimental design of efficacy and safety studies. Many of these experts were also recruited by StemCells Inc. to participate in preclinical and clinical working groups hosted by the Company. These working groups will ultimately evaluate the preclinical experimental results and help design the protocol for the proposed clinical trial. The DTP award also allowed StemCells Inc. to establish a “Project Team” consisting of highly trained and skilled personnel at UCI, StemCells Inc., and an established Contract Research Organization. This Project Team will be responsible for the production and supply of the human neural stem cells, the execution of all efficacy and safety studies, and the preparation and submission of IND documents to the FDA within the next 4 years. Finally, the DTP award allowed StemCells Inc. to timely develop and submit its DTTD application to CIRM, in which the Company requested funding in the amount of up to $20 million to facilitate execution of IND-enabling safety and efficacy studies for its proposed breakthrough neural stem cell treatment for AD.

© 2013 California Institute for Regenerative Medicine