Neurological Disorders

Coding Dimension ID: 
303
Coding Dimension path name: 
Neurological Disorders

Human ES cell-derived MGE inhibitory interneuron transplantation for spinal cord injury

Funding Type: 
Early Translational III
Grant Number: 
TR3-05606
ICOC Funds Committed: 
$1 623 251
Disease Focus: 
Spinal Cord Injury
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Transplantation of neuronal precursors into the central nervous system offers great promise for the treatment of neurological disorders including spinal cord injury (SCI). Among the most significant consequences of SCI are bladder spasticity and neuropathic pain, both of which likely result from a reduction in those spinal inhibitory mechanisms that are essential for normal bladder and sensory functions. Our preliminary data show that embryonic inhibitory neuron precursor cells integrate in the adult nervous system and increase inhibitory network activity. Therefore inhibitory nerve cell transplants could be a powerful way to establish new inhibitory circuits in the injured spinal cord that will reduce bladder spasticity and attenuate central neuropathic pain. We already have proof-of-principle data that murine inhibitory nerve cells integrate in the adult spinal cord and improve symptoms in an animal model of chronic spinal cord injury. We have also recently developed methods to create human inhibitory interneurons from embryonic stem cells. This proposal will capitalize on these recent developments and determine whether our human embryonic stem cell-derived inhibitory cells can be successfully transplanted into the grey matter of the injured spinal cord and reduce neurogenic bladder dysfunction and neuropathic pain, two major causes of suffering in chronic SCI patients. If successful, our studies will lay the groundwork for a potential novel therapy for chronic SCI.
Statement of Benefit to California: 
There are an estimated 260,000 individuals in the United States who currently live with disability associated with chronic spinal cord injury (SCI). Symptoms of chronic SCI include bladder dyssynergia reflected by incontinence coincident with asynchronous contraction of internal and external sphincters, and central neuropathic pain, both of which severely impede activities of daily living, reduce quality of life, and contribute to the very high medical costs of caring for the Californians who suffer from chronic spinal cord injury. The Geron trial for SCI, as well as other cell-based approaches, aim to treat acute SCI. This proposal considers a different potentially complementary cell-transplantation strategy that is directed to more chronic SCI with the goal of improving bladder function and reducing pain. We propose to use cell grafts of inhibitory interneurons that we have derived from human stem cells in order to provide a novel treatment. If successful, we will have defined a therapeutic option that targets the most prevalent population of spinal cord injured patients. As the country's most populous state, California has the largest number of patients with chronic SCI, approximately 12,000. The estimated economic cost to California in lost productivity and medical expenses amounts to $400,000,000 annually. The potential savings in medical care costs, and improvement in quality of life will therfore have a disproportional benefit to the state of California.
Progress Report: 
  • From the past six months of work, we report considerable progress toward our aims of investigating the safety and efficacy of human inhibitory nerve precursor (MGE) cell transplantation for the treatment of spinal cord injury-induced bladder spasticity and neuropathic pain. Our first aim details the injection of human MGE cells into the uninjured rodent spinal cord and investigation of cell fate and potential adverse side effects from their transplantation. During the reporting period, we completed histological analyses for the two-month time point post-injection, and we found that the human MGE cells, derived from human embryonic stem cells (hESCs), appropriately matured into forebrain-type inhibitory interneurons in the rodent spinal cord. Also, we initiated histological examination of animals six months post-injection and detected robust human cell survival, dispersal into the spinal cord grey matter, and neuronal maturation, but no evidence of tumor formation. In addition, we completed behavioral analyses of animals injected with hESC-derived MGE cells at two and six months post-injection. Thus far, we have not observed any adverse side effects when human MGE cells are transplanted into the uninjured animal as determined by measures of body weight, locomotion, bladder function, and pain sensitivity.

Inhibitory Nerve Cell Precursors: Dosing, Safety and Efficacy

Funding Type: 
Early Translational II
Grant Number: 
TR2-01749
ICOC Funds Committed: 
$1 752 058
Disease Focus: 
Neurological Disorders
Epilepsy
Pediatrics
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
Many neurological disorders are characterized by an imbalance between excitation and inhibition. Our ultimate goal: to develop a cell-based therapy to modulate aberrant brain activity in the treatment of these disorders. Our initial focus is on epilepsy. In 20-30% of these patients, seizures are unresponsive to drugs, requiring invasive surgical resection of brain regions with aberrant activity. The candidate cells we propose to develop can inhibit hyperactive neural circuits after implantation into the damaged brain. As such, these cells could provide an effective treatment not just for epilepsy, but also for a variety of other neurological conditions like Parkinson's, traumatic brain injury, and spasticity after spinal cord injury. We propose to bring a development candidate, a neuronal cell therapy, to the point of preclinical development. The neurons that normally inhibit brain circuits originate from a region of the developing brain called the medial ganglionic eminence (MGE). When MGE cells are grafted into the postnatal or adult brain, they disperse seamlessly and form inhibitory neurons that modulate local circuits. This property of MGE cells has not been shown for any other type of neural precursor. Our recent studies demonstrate that MGE cells grafted into an animal model of epilepsy can significantly decrease the number and severity of seizures. Other "proof-of-principle" studies suggest that these progenitor cells can be effective treatments in Parkinson's. In a separate effort, we are developing methods to differentiate large numbers of human MGE (H-MGE) cells from embryonic stem (ES) cells. To translate this therapy to humans, we need to determine how many MGE cells are required to increase inhibition after grafting and establish that this transplantation does not have unwanted side-effects. In addition, we need simple assays and reagents to test preparations of H-MGE cells to determine that they have the desired migratory properties and differentiate into nerve cells with the expected inhibitory properties. At present, these issues hinder development of this cell-based therapy in California and worldwide. We propose: (1) to perform "dose-response" experiments using different graft sizes of MGE cells and determine the minimal amount needed to increase inhibition; (2) to test whether MGE transplantation affects the survival of host neurons or has unexpected side-effects on the behavior of the grafted animals; (3) to develop simple in vitro assays (and identify reagents) to test H-MGE cells before transplantation. Our application takes advantage of an established multi-lab collaboration between basic scientists and clinicians. We also have the advice of neurosurgeons, epilepsy neurologists and a laboratory with expertise in animal behavior. If a safe cell-based therapy to replace lost inhibitory interneurons can be developed and validated, then clinical trials in patients destined for invasive neurosurgical resections could proceed.
Statement of Benefit to California: 
This proposal is designed to accelerate progress toward development of a novel cell-based therapy with potentially broad benefit for the treatment of multiple neurological diseases. The potential to translate our basic science findings into a treatment that could benefit patients is our primary focus and our initial target disease is epilepsy. This work will provide benefits to the State of California in the following areas: * California epilepsy patients and patients with other neurological diseases will benefit from improved therapies. The number of patients refractory to available medications is significant: a recent report from the Center for Disease Control and Prevention [www.cdc.gov/epilepsy/] estimates that 1 out of 100 adults have epilepsy and up to one-third of these patients are not receiving adequate treatment. In California, it is one of the most common disabling neurological conditions. In most states, including California, epileptic patients whose seizures aren't well-controlled cannot obtain a driver's license or work certain jobs -- truck driving, air traffic control, firefighting, law enforcement, and piloting. The annual cost estimates to treat epilepsy range from $12 to $16 billion in the U.S. Current therapies curb seizures through pharmacological management but are not designed to modify brain circuits that are damaged or dysfunctional. The goals of our research program is to develop a novel cell-based therapy with the potential to eliminate seizures and improve the quality of life for this patient population, as well as decrease the financial burden to the patients' families, private insurers, and state agencies. Since MGE cells can mediate inhibition in other neurological and psychiatric diseases, the neural based therapy we are proposing is likely to have a therapeutic and financial impact that is much broader. * Technology transfer in California. Historically, California institutions have developed and implemented a steady flow of technology transfer. Based on these precedents and the translational potential of our research goals, both to provide bioassays and potentially useful markers to follow the differentiation of MGE cells, this program is likely to result in licensing of further technology to the corporate sector. This will have an impact on the overall competitiveness of our state's technology sector and the resulting potential for creation of new jobs. * Stem cell scientists training and recruitment in California. As part of this proposal we will train a student, technicians, and associated postdocs in MGE progenitor derivation, transplantation, and cell-based therapy for brain repair. Moreover, the translational nature of the disease-oriented proposal will result in new technology which we expect to be transferable to industry partners for facilitate development into new clinical alternatives.
Progress Report: 
  • Advances in stem cell research and regenerative medicine have led to the potential use of stem cell therapies for neurodegenerative, developmental and acquired brain disease. The Alvarez-Buylla lab at UCSF is part of a collaboration that is pioneering the investigation of therapeutic interneuron replacement for the correction of neurological disorders arising from defects in neural excitation/inhibition. Our preliminary data suggests that grafting interneuron precursors into the postnatal rodent brain allows for up to a 35% increase in the number of cortical interneurons. Interneuron replacement has been used in animal models to modify plasticity, prevent spontaneous epileptic seizures, ameliorate hemiparkinsonian motor symptoms, and prevent PCP-induced cognitive deficits. Transplantation of interneuron precursors therefore holds therapeutic potential for treatment of human neurological diseases involving an imbalance in circuit inhibition/excitation.
  • The goal of the research in progress here is to ultimately prepare human interneuron precursors for clinical trials. Towards the therapeutic development of inhibitory neuron precursor transplantation for human neurological disorders, we have made significant progress in the differentiation of these cells from human ESCs and will complete optimization of this protocol. We will continue our investigation of rodent-derived interneuron transplantation to obtain relevant preclinical data for dose response, safety and efficacy in animal models. These dosing and safety data will then serve as the baseline for comparison with human interneuron precursors and inform design of preclinical studies of these cells in immunosuppressed mice. Together, these data will provide essential information for developing a plan for clinical trials using human interneuron precursors.
  • During this first year, we have made considerable headway in the optimization of the human interneuron precursor differentiation protocol, verified functional engraftment of these cells in mice, and begun to collect dose, safety and efficacy data for rodent-derived interneuron transplantation. Importantly, we have achieved the development of a protocol that robustly generates interneuron-like progenitor cells from human ES cells and demonstrated that these progenitors mature in vitro and in vivo into GABAergic inhibitory interneurons with functional potential. We have also compared the behavior of primary fetal cells to these human interneuron precursor-like cells both in vivo and in vitro. As we continue to optimize our ES cell differentiation protocol, these primary interneuron precursors will enable initial human cell dose response and behavior experiments and, along with rodent-derived cells, will provide important baseline measures.
  • In sum, this work will provide essential knowledge for the therapeutic development of inhibitory neuron transplantation. The experiments underway will yield insights that will be critical to the development of a clinical trial using human interneuron precursors.
  • During the reporting period, we have developed methods to enable the optimization of inhibitory nerve precursor cell, or MGE cell, derivation from human pluripotent stem cells (hPSCs). Optimization encompassed increasing MGE cell motility, enhancing MGE cell maturation into inhibitory nerve subtypes, and elimination of tumors post-transplantation into the rodent brain. Furthermore, we demonstrated that the injected hPSC-MGE cells functionally matured into inhibitory nerves with advanced physiological properties that integrated into the rodent brain. In addition, we determined an optimum dose of injected mouse MGE cells in rodent. Moreover, following injection of either the optimum dose or a 10-fold higher dose of mouse MGE cells, we found no detectable behavioral side effects from MGE cell transplantation.

Derivation of Inhibitory Nerve Cells from Human Embryonic Stem Cells

Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00346
ICOC Funds Committed: 
$2 507 223
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 
Parkinson’s disease (PD) is caused by degeneration of a specific population of dopamine-producing nerve cells in the brain and is chronic, progressive, and incurable. Loss of dopamine-containing cells results in profound physiological disturbances producing tremors, rigidity, and severe deterioration of gate and balance. In the United States, approximately 1.5 million people suffer with PD and it is estimated that 60,000 new cases are diagnosed each year. Drugs can modify some of the disease symptoms, but many patients develop disabling drug-induced movements that are unresponsive to medication. Deep brain stimulation can alleviate motor symptoms in some patients but is not a cure. We plan an entirely novel approach to treat PD. We propose to utilize a specific class of inhibitory nerve cells found in the embryonic brain, known as MGE cells, as donor transplant cells to inhibit those brain regions whose activity is abnormally increased in PD. In preliminary studies we have demonstrated that this approach can relieve symptoms in an animal model of PD. To turn this approach into a patient therapy, we will need to develop methods to obtain large numbers of human cells suitable for transplantation. This proposal seeks to address this problem by producing unlimited numbers of exactly the right type of MGE nerve cell using human embryonic stem cells. The inhibitory nerve cells we seek to produce will reduce brain activity in target regions. They may therefore be used to treat other conditions characterized by excessive brain activity, such as epilepsy. Epilepsy can be a life threatening and disabling condition. Nearly two million Americans suffer with some form of epilepsy. Unfortunately, modulation of brain excitability using antiepileptic drugs can have serious side-effects, especially in the developing brain, and many patients can only be improved by surgically removing areas of the brain containing the seizure focus. Using MGE cells made from human embryonic stem cell lines, we hope to develop a novel epilepsy treatment that could replace the need for surgery or possibly even drug therapy. We propose an integrated approach that combines the complementary expertise of four UCSF laboratories to achieve our goals. We have already determined that mouse MGE cells can improve the symptoms of PD and epilepsy when grafted into animal models. We now need to develop methods to obtain large numbers of human cells suitable for grafting. We need to ensure that when delivered, the cells will migrate and integrate in the target brain regions, and we need to evaluate therapeutic efficacy in animal models of Parkinson’s disease and epilepsy. This proposal addresses these goals. If successful, this accomplishment will set the stage for studies in primates and hasten the day when MGE cells may be used as patient therapy for a wide variety of debilitating neurological disorders.
Statement of Benefit to California: 
This collaborative proposal promises to accelerate progress toward a novel cell based therapeutic agent with potentially widespread benefit for the treatment of a variety of grave neurological disorders. The promise of this work to eventually help our patients is our primary motivation. Additionally, our studies, if successful, could form the basis of a new stem cell technology to produce unlimited numbers of cellular therapeutic products of uniform quality and effectiveness. The production of neurons from stable nerve cell lines derived from human embryonic stem cells is a much-needed biotechnology and a central challenge in embryonic stem (ES) cell biology. Current methods are inefficient at producing neurons that can effectively migrate and integrate into adult brain, and available cell lines generally lack the ability to differentiate into specific neuronal subtypes. Moreover, while many cells resist neuronal differentiation others often take on a glial cell fate. Identification of key factors driving ES cells into a specific neuronal lineage is the primary focus of the current proposal, and if achieved, will generate valuable intellectual property. As such, it may attract biotechnology interest and promote local business growth and development. Moreover, the inhibitory nerve cell type that is the goal of this proposal would be a potentially valuable therapeutic agent. This achievement could attract additional funding from state or industry to begin primate studies and ultimately convert any success into a safe and effective product for the treatment of patients. To produce and distribute stable medicinal-grade cells of a purity and consistency appropriate for therapeutic use will require partnering with industry. Industry participation would be expected to provide economic benefits in terms of job creation and tax revenues. Hopefully, there may ultimately be health benefits for the citizens of California who are suffering from neurological disease.
Progress Report: 
  • Our goal is to develop a novel cell-based therapy to treat patients with epilepsy, Parkinson’s disease and brain injury. The strategy is to use human embryonic stem cells to produce inhibitory nerve cells for transplantation and therapeutic modulation of neural circuits, an approach that may have widespread clinical application. In preliminary studies using inhibitory neuron precursors from embryonic rodent brains, we have demonstrated that this approach can relieve symptoms in animal models of Parkinson’s disease and epilepsy. To turn this approach into a patient therapy we need to develop methods to obtain large numbers of human cells suitable for transplantation. The object of this proposal is to develop methods for producing unlimited numbers of exactly the right type of inhibitory nerve cell using human embryonic stem (ES) cells as the starting material.
  • One strategy to make large numbers of inhibitory neurons would be to convert human ES cells into neural stem (NS) cell lines that could be stably propagated indefinitely, and then to convert the NS cells into inhibitory nerve cells. However, we discovered that NS cell lines do not retain the capacity to generate neurons after extended culture periods but instead produce only glial cells. We have therefore begun to create neurons directly from ES cells, without interrupting the differentiation to amplify cell number at the neural progenitor phase. Using this approach, we have been successful at specifying the right pathway to produce the specific neural progenitor cell we need during the process of differentiation from ES cells. Because there are multiple subytpes of inhibitory neuron, we are testing various cell culture manipulations to enrich for the specific neuron subtype that matches our desired cell type. In addition, we are developing reporter cell lines that will allow us to observe differentiation from ES cell to inhibitory neuron in real time and purify the cells of interest for transplantation. Finally, we are also testing whether artificially expressing key proteins that regulate gene expression and are required for inhibitory neuron production during brain development can more efficiently drive a high percentage of ES cells to differentiate into the desired cell type.
  • With these tools in place, we hope to begin animal transplantation studies using human ES-derived inhibitory nerve cells within the coming year. If successful, this accomplishment will set the stage for studies in primates, and hasten the day when inhibitory nerve cells may be used as patient therapy for a wide variety of debilitating neurological disorders including Parkinson’s disease, epilepsy, and brain injury.
  • This past year, we have made significant strides toward the production of inhibitory nerve cells and precursor (MGE) cells from human embryonic stem (ES) and induced pluripotent stem (iPS) cells. These stem cell-derived MGE progenitor cells appropriately mature into inhibitory neurons upon further culture and following transplantation into the newborn mouse brain. Additionally, human ES cell-derived inhibitory neurons possess active membrane properties by electrophysiology analysis. Work is ongoing to determine their functional potential following transplantation: whether these cells can make connections, or synapses, with each other and with neurons in the host brain in order to elevate inhibitory tone in the transplanted animals. Following successful completion of this aim in the coming year, we will be well positioned to examine the therapeutic potential of these cells in pre-clinical epilepsy and Parkinson's disease animal models.
  • Inhibitory nerve cell deficiencies have been implicated in many neurological disorders including epilepsy. The decreased inhibition and/or increased excitation lead to hyper-excitability and brain imbalance. We are pursuing a strategy to re-balance the brain by injecting inhibitory nerve precursor cells. Most inhibitory nerve cells come from the medial ganglionic eminence (MGE) during fetal development. We have previously documented that mouse MGE transplants reduce seizures in animal models of epilepsy and ameliorate motor symptoms in a rat model of Parkinson’s disease. This project aims to develop human MGE cells from human embryonic stem (ES) cells and to investigate their function in animal models of human disease. In the past year, we have successfully developed a robust and reproducible method to generate human ES cell-derived MGE cells and have performed extensive gene expression and functional analyses. The gene expression profiles of these ES-derived MGE cells resemble those of mouse and human fetal MGE. They appropriately mature into inhibitory nerve cells in culture and following injection into rodent brain. Also, the ES-derived inhibitory cells exhibit active electrical properties and establish connections (synapses) with other nerve cells in culture and in the rodent brain. Thus, we have succeeded in deriving inhibitory human MGE cells from human ES cells and are now transplanting these cells into animal models of disease.

MGE Enhancers to Select for Interneuron Precursors Produced from Human ES Cells

Funding Type: 
Basic Biology II
Grant Number: 
RB2-01602
ICOC Funds Committed: 
$1 387 800
Disease Focus: 
Epilepsy
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Active
Public Abstract: 
There are now viable experimental approaches to elucidate the genetic and molecular mechanisms that underlie severe brain disorders through the generation of stem cells, called iPS cells, from the skin of patients. Scientists are now challenged to develop methods to program iPS cells to become the specific types of brain cells that are most relevant to each specific brain disease. For instance, there is evidence that defects in cortical interneurons contribute to epilepsy, autism and schizophrenia. The experiments proposed in this grant application aim to understand basic mechanisms that underlie the development of cortical interneurons. We are discovering regulatory elements (called enhancers) in the human genome that control gene expression in developing interneurons. We have three experimental Aims. In Aim 1, we will study when and where these enhancers are expressed during mouse brain development. We will concentrate on identifying enhancers that control gene expression during development of specific types of cortical interneurons, although we hope to use this approach for additional cell types. Once we identify and characterize where and when these enhancers are active, in Aim 2 we will use the enhancers as tools in human stem cells to produce specific types of cortical interneurons in the test tube. The enhancers will be used to express proteins in the stem cells that will enable us purify only those cells that have specific properties (e.g. properties of cortical interneurons). In Aim 3 we will explore whether the human brain produces cortical interneurons in the same way as the mouse brain; this information is essential to identify molecular markers on the developing interneurons that could be used for further characterization and purification of the interneurons that we care generating in Aim 2. We want to emphasize that while the experiments focus on cortical interneuron subtypes, our work has general implications for the other types of brain cells our labs study, such as cortical and striatal neurons. In sum, the basic science mechanisms that we will discover will provide novel insights into how to generate specific types of neurons that can be used to study and treat brain diseases.
Statement of Benefit to California: 
Large numbers of California residents are stricken with severe medical disorders affecting the function of their brain. These include epilepsy, Parkinson’s Disease, Alzheimer’s Disease, Huntington’s Disease, Autism and Schizophrenia. For instance, a recent report from the Center for Disease Control and Prevention [www.cdc.gov/epilepsy/] estimates that 1 out of 100 adults have epilepsy. In California, epilepsy is one of the most common disabling neurological conditions, with approximately 140,000 affected individuals. The annual cost estimates to treat epilepsy range from $12 to $16 billion in the U.S. Currenlty up to one-third of these patients are not receiving adequate treatment, and may benefit from a cell-based transplantation therapy that we are currently exploring with our work in mice. There are now viable experimental approaches to elucidate the genetic and molecular mechanisms that underlie these neuropsychiatric disorders through the generation a stem cells, called iPS cells, from the skin of patients. Scientists are now challenged to develop methods to program iPS cells to become the specific types of brain cells that are most relevant to each specific brain disease. For instance, there is evidence that defects in cortical interneurons contribute to epilepsy, autism and schizophrenia. The experiments proposed in this grant application aim to understand basic mechanisms that underlie the development of cortical interneurons. We are discovering regulatory elements (called enhancers) in the human genome that control gene expression in developing interneurons. Our experiments will help us understand fundamental mechanisms that govern development of these cells. Furthermore, we have designed experiments that harness these enhancers to drive the production of specific subtypes of these cells from human stem cells. This will open the door to making these types of neurons from iPS cells to study human disease, and potentially to the production of these neurons for transplantation into patients whose interneurons are deficient in regulating their brain function. Furthermore, the approach we describe is general and readily applicable to the generation of other brain cells. Thus, the results from these studies will provide essential and novel basic information for understanding and potentially treating severe brain disorders.
Progress Report: 
  • We have been developing new methods to identify the products of stems cells that are differentiated in tissue culture dished. We are focusing on generating a specific type of neuron - cortical interneuron. To this end, we have identified specific sequences in the human genome that drive gene expression in the immature cortical interneurons. Results from the first year of our work provide evidence that our method to use these gene expression elements is working to help us identify cortical interneurons.
  • We have identified 5 gene regulatory elements (enhancers) that can promote gene expression in a specific type of neuronal precursor and neuron. We found that these enhancers can be used to aid in the identification and isolation of these types of cells from embryonic stem cells. In other studies, our group is testing the feasibility of using these types of cells to ameliorate neurological disorders, such as epilepsy.
  • We have identified 5 gene regulatory elements (enhancers) that can promote gene expression in a specific type of neuronal precursor and neuron. We found that these enhancers can be used to aid in the identification and isolation of these types of cells from embryonic stem cells. In other studies, our group is testing the feasibility of using these types of cells to ameliorate neurological disorders.

Molecular mechanisms involved in adult neural stem cell maintenance

Funding Type: 
New Faculty I
Grant Number: 
RN1-00527
ICOC Funds Committed: 
$2 348 520
Disease Focus: 
Aging
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
Cell Line Generation: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
The adult brain contains a pool of stem cells, termed adult neural stem cells, that could be used for regenerative purposes in diseases that affect the nervous system. The goal of this proposal is to understand the mechanisms that promote the maintenance of adult neural stem cells as an organism ages. Understanding the factors that maintain the pool of adult neural stem cells should open new avenues to prevent age-dependent decline in brain functions and to use these cells for therapeutic purposes in neurological and neurodegenerative diseases, such as Alzheimer’s or Parkinson’s diseases. Our general strategy is to use genes that play a central role in organismal aging as we have recently discovered that two of these genes, Foxo and Sirt1, have profound effects on the maintenance and self-renewal of adult neural stem cells. We propose to use these genes as a molecular handle to understand the mechanisms of maintenance of neural stem cells. Harnessing the regenerative power of stem cells by acting on genes that govern aging will provide a novel angle to identify stem cell therapeutics for neurological and neurodegenerative diseases, most of which are age-dependent.
Statement of Benefit to California: 
As the population of the State of California ages, neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease affect increasing numbers of patients. There are no efficient treatments of cures for these diseases. In addition to the devastating effects of neurodegenerative diseases on the patients and their relatives, the cost of caring for California’s Alzheimer patients—about $22.4 billion in 2000—has been estimated to triple by 2040 due to the aging of the baby-boomer’s generation. Stem cells from the brain, or neural stem cells, hold the promise of treatments and cures for these neurodegenerative diseases. One therapeutic strategy will be to replace degenerating cells in patients with stem cells. Another approach would be to identify strategy to better maintain the pool of neural stem cell with age. Both approaches will only be possible when the mechanisms controlling the maintenance of these stem cells and their capacity to produce their functional progeny are better understood in young and old individuals. We propose to study the mode of action in neural stem cells of two genes, Foxo and Sirt, that are known to play major roles to extend lifespan in a variety of species. These genes are major targets for the development of stem cell therapeutic strategies that will benefit a wide range of patients suffering from age-dependent neurodegenerative disorders. The development of effective replacement therapies in neurodegenerative diseases will be a benefit for the rapidly aging population of California; it will also alleviate the financial burden that these age-related disorders create for the State of California.
Progress Report: 
  • Aging is accompanied by a decline in the number and the function of adult stem cells in several tissues. In the brain, the depletion of adult neural stem cells (NSC) may underlie impaired cognitive performance associated with aging. Discovering the factors that govern the maintenance of adult NSC during aging should allow us to harness their regenerative potential for therapeutic purposes during normal aging and age-related neurodegenerative disorders. We have recently found that two 'longevity genes', Foxo3 and Sirt1, are critical for adult NSC function. In the past year, we have published a manuscript showing that Foxo3 is necessary for the maintenance of NSC in the adult brain. We have also started to explore the critical mechanisms by which Foxo3 maintains adult neural stem cells in the brain. We have used ultra-high throughput sequencing approach to reveal that Foxo3 is recruited to the regulatory regions of 3,000 genes in the adult neural stem cells, thereby triggering a gene expression network that regulates both the ability of neural stem cells to divide and their ability to give rise to progeny. Finally, we have obtained new results in the past year, showing that Sirt1, another 'longevity gene' is critical for the proper function of neural stem cells in the adult brain, and their ability to give rise to differentiated cells. Together, our results will help understand the regulation of neural stem cell maintenance in aging individuals and will provide new avenues to preserve the pool of these cells in the brain. Modulating longevity genes to harness the regenerative power of stem cells will provide new avenues for stem cell therapeutics for neurological and neurodegenerative diseases, most of which are age-dependent.
  • The adult brain contains pools of stem cells called neural stem cells that are critical for
  • the formation of new neurons in the adult brain. During aging, the number of neural stem
  • cells and their ability to give rise to new neurons strikingly decline. This decline could
  • underlie at least in part memory deterioration that occurs during aging and age-related
  • neurodegenerative disease such as Alzheimer’s disease. We have been interested over
  • the years in the importance of genes that regulate overall longevity in the control of the
  • pool of neural stem cells. We made the important discovery that Foxo3, a gene that has
  • been implicated in human exceptional longevity, is necessary for preserving the neural
  • stem cell pool. In the past year, we have made extensive progress in characterizing the
  • ensemble of genes regulated by Foxo3 in adult neural stem cells, a key step in
  • unraveling the mechanisms by which neural stem cells are maintained intact. In the past
  • year, we have observed that in the absence of another gene important for longevity
  • Sirt1, there is an unexpected increase in oligodendrocyte progenitors, which are cells
  • that are important for myelination of neurons, which is important for the proper
  • propagation of the neuronal information. Defects in myelination, which happen for
  • example in multiple sclerosis, have devastating consequences on the neurological
  • function. In the past year, we have made progress to understand the cellular and
  • molecular mechanism of action that enhances the production of oligodendrocytes in the
  • absence of Sirt1. Finally, we have made progress in initiating a project in human stem
  • cells that can be reprogrammed from adult cells, to extend our findings from mice to
  • humans, in particular as it relates to human diseases that have an age-dependent
  • component.
  • The number and function of adult stem cells decrease with age in a number of tissues. In the nervous system, the depletion of functional adult neural stem cells (NSC) may be responsible for impaired cognitive performance associated with normal or pathological aging. Understanding the factors that govern the maintenance of adult NSC should provide insights into their regenerative potential and open new avenues to use these cells for therapeutic purposes during normal aging and age-related neurodegenerative disorders.
  • Clues to key regulators of stem cell functions may come from studies of the genetics of aging, as genes that regulate longevity may do so by maintaining stem cells. To date, the most compelling examples for genes that control aging in a variety of organisms include the insulin-Akt-Foxo transcription factor pathway and the Sirt deacetylases. We have recently found that Foxo3 regulates a network of genes in adult NSC and interact with another transcription factor, called Ascl1, to preserve the integrity of the NSC pool and prevent the premature exhaustion of this important pool of cells. In the past year, we have also made the surprising discovery that inactivating Sirt1 in adult neural stem cells leads to the increased production of oligodendrocyte progenitors, which are cells that are crucial for myelination and could help demyelinating diseases, such as multiple sclerosis, or demyeliating injuries such as spinal cord injuries. Importantly, the enzymatic activity of Sirt1 can be targeted by small molecules, underscoring the potential for Sirt1 as a therapeutic target in stem cell and oligodendrocyte production. In the last year, we have also made significant progress in using cellular reprogramming to investigate the role of longevity genes in human cells. Our work examines the mechanisms by which ‘longevity genes’ regulate stem cell function and maintenance. Harnessing the regenerative power of stem cells by acting on longevity genes will provide a novel angle to identify stem cell therapeutics for regenerative medicine.
  • The adult brain contains reservoirs of neural stem cells that are critical for the formation of new neurons, oligodendrocytes, and astrocytes in the adult brain. During aging, the number of neural stem cells and their ability to give rise to new neurons strikingly decline. This decline could underlie at least in part the decline in memory that occurs during aging. We are interested in the importance of genes that regulate organismal longevity in the control of the reservoir of neural stem cells. We discovered that Foxo3, a transcription factor that has been implicated in human exceptional longevity, is important for regulating the neural stem cell pool pool. In the past year, we have made extensive progress in characterizing the interaction between Foxo3 and specific chromatin states at target genes in adult neural stem cells, which provides us with a mechanistic view onto how longevity genes can affect specific networks of target genes in neural stem cells in adult organisms. In the past year, we have made significant progress in testing the role of a gene involved in healthspan and longevity in a number of organisms, the deacetylase Sirt1, in adult neural stem cell function. We have observed that Sirt1 inactivation, whether genetic or pharmacological, leads to an increase in oligodendrocyte progenitors, which are cells that are important for myelination of axons. We have found that Sirt1 inactivation is beneficial for models of demyelinating injuries and diseases, which has important consequences for multiple sclerosis. Finally, we are making progress in reprogramming adult human fibroblasts into induced pluripotent stem cells and induced NSCs, with the aim to test the importance of longevity genes in this process.

Human iPSC modeling and therapeutics for degenerative peripheral nerve disease

Funding Type: 
New Faculty Physician Scientist
Grant Number: 
RN3-06530
ICOC Funds Committed: 
$3 206 737
Disease Focus: 
Neuropathy
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
The applicant is an MD/PhD trained physician scientist, whose clinical expertise is neuromuscular disorders including peripheral nerve disease. The proposal is aimed at providing a research proposal and career development plan that will allow the applicant to develop an independent research program, which attempts to bring stem cell based therapies to patients with peripheral nerve diseases. The proposal will use “adult stem cells” derived from patients with an inherited nerve disease, correct the genetic abnormality in those cells, and determine the feasibility of transplanting the genetically engineered cells back into peripheral nerve to slow disease progression.
Statement of Benefit to California: 
The proposed research will benefit the State of California as it will support the career development of a uniquely trained physician scientist to establish an innovative translational stem cell research program aimed toward direct clinical application to patients. The cutting edge technologies proposed are directly in line with the fundamental purpose of the California Initiative for Regenerative Medicine. If successful, both scientific and patient advocate organizations would recognize that these advances came directly from the unique efforts of CIRM and the State of California to lead the world in stem cell research. Finally, as a result of funding of this award, further financial investments from private and public funding organizations would directly benefit the State in the years to come.
Progress Report: 
  • During this award period we have made significant progress. We have established induced pluripotent stem cell (iPSC) lines from four patients with Charcot-Marie-Tooth disease type 1A (CMT1A) due to the PMP22 duplication. We have validated our strategy to genetically engineer induced pluripotent stem cells from patients with inherited neuropathy, and have genetically engineered several patient lines. We further have begun to differentiate these iPSCs into Schwann cell precursors, to begin to investigate cell type specific defects that cause peripheral neurodegeneration in patients with CMT1A. Finally we have imported and characterized a transgenic rat model of CMT1A in order to begin to investigate the ability to inject iPSC derived Schwann cell precursors into rodent nerves as a possible neuroprotective strategy.

Restoration of memory in Alzheimer’s disease: a new paradigm using neural stem cell therapy

Funding Type: 
Disease Team Therapy Development - Research
Grant Number: 
DR2A-05416
ICOC Funds Committed: 
$20 000 000
Disease Focus: 
Alzheimer's Disease
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
Alzheimer’s disease (AD), the leading cause of dementia, results in profound loss of memory and cognitive function, and ultimately death. In the US, someone develops AD every 69 seconds and there are over 5 million individuals suffering from AD, including approximately 600,000 Californians. Current treatments do not alter the disease course. The absence of effective therapies coupled with the sheer number of affected patients renders AD a medical disorder of unprecedented need and a public health concern of significant magnitude. In 2010, the global economic impact of dementias was estimated at $604 billion, a figure far beyond the costs of cancer or heart disease. These numbers do not reflect the devastating social and emotional tolls that AD inflicts upon patients and their families. Efforts to discover novel and effective treatments for AD are ongoing, but unfortunately, the number of active clinical studies is low and many traditional approaches have failed in clinical testing. An urgent need to develop novel and innovative approaches to treat AD is clear. We propose to evaluate the use of human neural stem cells as a potential innovative therapy for AD. AD results in neuronal death and loss of connections between surviving neurons. The hippocampus, the part of the brain responsible for learning and memory, is particularly affected in AD, and is thought to underlie the memory problems AD patients encounter. Evidence from animal studies shows that transplanting human neural stem cells into the hippocampus improves memory, possibly by providing growth factors that protect neurons from degeneration. Translating this approach to humans could markedly restore memory and thus, quality of life for patients. The Disease Team has successfully initiated three clinical trials involving transplantation of human neural stem cells for neurological disorders. These trials have established that the cells proposed for this therapeutic approach are safe for transplantation into humans. The researchers in this Disease Team have shown that AD mice show a dramatic improvement in memory skills following both murine and human stem cell transplantation. With proof-of-concept established in these studies, the Disease Team intends to conduct the animal studies necessary to seek authorization by the FDA to start testing this therapeutic approach in human patients. This project will be conducted as a partnership between a biotechnology company with unique experience in clinical trials involving neural stem cell transplantation and a leading California-based academic laboratory specializing in AD research. The Disease Team also includes expert clinicians and scientists throughout California that will help guide the research project to clinical trials. The combination of all these resources will accelerate the research, and lead to a successful FDA submission to permit human testing of a novel approach for the treatment of AD; one that could enhance memory and save lives.
Statement of Benefit to California: 
The number of AD patients in the US has surpassed 5.4 million, and the incidence may triple by 2050. Roughly 1 out of every 10 patients with AD, over 550,000, is a California resident, and alarmingly, because of the large number of baby-boomers that reside in this state, the incidence is expected to more than double by 2025. Besides the personal impact of the diagnosis on the patient, the rising incidence of disease, both in the US and California, imperils the federal and state economy. The dementia induced by AD disconnects patients from their loved ones and communities by eroding memory and cognitive function. Patients gradually lose their ability to drive, work, cook, and carry out simple, everyday tasks, ultimately losing all independence. The quality of life for AD patients is hugely diminished and the burden on their families and caregivers is extremely costly to the state of California. Annual health care costs are estimated to exceed $172 billion, not including the additional costs resulting from the loss of income and physical and emotional stress experienced by caregivers of Alzheimer's patients. Given that California is the most populous state and the state with the highest number of baby-boomers, AD’s impact on California families and state finances is proportionally high and will only increase as the AD prevalence rises. Currently, there is no cure for AD and no means of prevention. Most approved therapies address only symptomatic aspects of AD and no disease-modifying approaches are currently available. By enacting Proposition 71, California voters acknowledged and supported the need to investigate the potential of novel stem cell-based therapies to treat diseases with a significant unmet medical need such as AD. In a disease like AD, any therapy that exerts even a modest impact on the patient's ability to carry out daily activities will have an exponential positive effect not only for the patients but also for their families, caregivers, and the entire health care system. We propose to evaluate the hypothesis that neural stem cell transplantation will delay the progression of AD by slowing or stabilizing loss of memory and related cognitive skills. A single, one-time intervention may be sufficient to delay progression of neuronal degeneration and preserve functional levels of memory and cognition; an approach that offers considerable cost-efficiency. The potential economic impact of this type of therapeutic research in California could be significant, and well worth the investment of this disease team proposal. Such an approach would not only reduce the high cost of care and improve the quality of life for patients, it would also make California an international leader in a pioneering approach to AD, yielding significant downstream economic benefits for the state.

Multiple Sclerosis therapy: Human Pluripotent Stem Cell-Derived Neural Progenitor Cells

Funding Type: 
Early Translational III
Grant Number: 
TR3-05603
ICOC Funds Committed: 
$4 799 814
Disease Focus: 
Multiple Sclerosis
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Active
Public Abstract: 
Multiple Sclerosis (MS) is a disease of the central nervous system (CNS) caused by inflammation and loss of cells that produce myelin, which normally insulates and protects nerve cells. MS is a leading cause of neurological disability among young adults in North America. Current treatments for MS include drugs such as interferons and corticosteroids that modulate the ability of immune system cells to invade the CNS. These therapies often have unsatisfactory outcomes, with continued progression of neurologic disability over time. This is most likely due to irreversible tissue injury resulting from permanent loss of myelin and nerve destruction. The limited ability of the body to repair damaged nerve tissue highlights a critically important and unmet need for MS patients. The long-term goal of our research is to develop a stem cell-based therapy that will not only halt ongoing loss of myelin but also lead to remyelination and repair of damaged nerve tissue. Our preliminary data in animal models of human MS are very promising and suggest that this goal is possible. Research efforts will concentrate on refining techniques for production and rigorous quality control of clinically-compatible transplantable cells generated from high-quality human pluripotent stem cell lines, and to verify the therapeutic activity of these cells. We will emphasize safety and development of the most therapeutically beneficial cell type for eventual use in patients with MS.
Statement of Benefit to California: 
One in seven Americans lives in California, and these people make up the single largest health care market in the United States. The diseases and injuries that affect Californians affect the rest of the US and the world. Many of these diseases involve degeneration of healthy cells and tissues, including neuronal tissue in diseases such as Multiple Sclerosis (MS). The best estimates indicate that there are 400,000 people diagnosed with MS in the USA and 2.2 million worldwide. In California, there are approximately 160,000 people with MS – roughly half of MS patients in the US live in California. MS is a life-long, chronic disease diagnosed primarily in young adults who have a virtually normal life expectancy but suffer from progressive loss of motor and cognitive function. Consequently, the economic, social and medical costs associated with the disease are significant. Estimates place the annual cost of MS in the United States in the billions of dollars. The development of a stem cell therapy for treatment of MS patients will not only alleviate ongoing suffering but also allow people afflicted with this disease to return to work and contribute to the economic stabilization of California. Moreover, a stem cell-based therapy that will provide sustained recovery will reduce recurrence and the ever-growing cost burden to the California medical community.
Progress Report: 
  • The team has been highly productive during the first year of work on this award. A major goal of the project is to evaluate the efficacy of neural progenitor cell transplantation to promote remyelination following virus induced central nervous system damage. With intracranial infection by the virus mouse hepatitis virus (MHV), mice develop paralysis due to immune mediated destruction of cells that generate myelin. Using protocols developed in the Loring laboratory, neural precursor cells (NPC) were derived from the human embryonic stem cell line H9. Mice developing paralysis due to intracranial infection with MHV were subject to intraspinal transplantation of these NPC, resulting in significant clinical recovery beginning at 2-3 weeks following transplant. This clinical effect of NPC transplantation remained out to six months, suggesting that these NPC are effective for long-term repair following demyelination. Despite this striking recovery, these human ES cell derived NPC were rapidly rejected. Several protocols for the generation of NPC for transplantation have been characterized, with the greatest clinical impact observed for NPC cultures bearing a high level of expression of TGF beta I and TGF beta II. These findings support the hypothesis that transplanted NPC reprogram the immune system within the central nervous system (CNS), leading to the activation of endogenous NPC and other repair mechanisms. Thus, it may not be necessary to induce complete immune suppression in order to promote remyelination and CNS repair following NPC transplantation for demyelinating diseases such as multiple sclerosis.

Development of Single Cell MRI Technology using Genetically-Encoded Iron-Based Reporters

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-02018
ICOC Funds Committed: 
$1 930 608
Disease Focus: 
Stroke
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
oldStatus: 
Active
Public Abstract: 
Clinical application of cell transplantation therapy requires a means of non-invasively monitoring these cells in the patient. Several imaging modalities, including MRI, bioluminescence imaging, and positron emission tomography have been used to track stem cells in vivo. For MR imaging, cells are pre-loaded with molecules or particles that substantially alter the image brightness; the most common such labelling strategy employs iron oxide particles. Several studies have shown the ability of MRI to longitudinally track transplanted iron-labeled cells in different animal models, including stroke and cancer. But there are drawbacks to this kind of labeling. Division of cells will result in the dilution of particles and loss of signal. False signal can be detected from dying cells or if the cells of interest are ingested by other cells. To overcome these roadblocks in the drive toward clinical implementation of stem cell tracking, it is now believed that a genetic labeling approach will be necessary, whereby specific protein expression causes the formation of suitable contrast agents. Such endogenous and persistent generation of cellular contrast would be particularly valuable to the field of stem cell therapy, where the homing ability of transplanted stem cells, long-term viability, and capacity for differentiation are all known to strongly influence therapeutic outcomes. However, genetic labeling or "gene reporter" strategies that permit sensitive detection of rare cells, non-invasively and deep in tissue, have not yet been developed. This is therefore the translational bottleneck that we propose to address in this grant, through the development and validation of a novel high-sensitivity MRI gene reporter technology. There have been recent reports of gene-mediated cellular production of magnetic iron-oxide nanoparticles of the same composition as the synthetic iron oxide particles used widely in exogenous labeling studies. It is an extension of this strategy, combined with our own strengths in developing high-sensitivity MRI technology, that we propose to apply to the task of single cell tracking of metastatic cancer cells and neural stem cells. If we are successful with the proposed studies, we will have substantially advanced the field of in vivo cellular imaging, by providing a stable cell tracking technology that could be used to study events occurring at arbitrary depth in tissue (unlike optical methods) and over unlimited time duration and arbitrary number of cell divisions (unlike conventional cellular MRI). With the ability to track not only the fate (migration, homing and proliferation) but also the viability and function of very small numbers of stem cells will come new knowledge of the behavior of these cells in a far more relevant micro-environment compared with current in vitro models, and yet with far better visualization and cell detection sensitivity compared with other in vivo imaging methods.
Statement of Benefit to California: 
Stem cell therapy has enormous promise to become a viable therapy for a range of illnesses, including stroke, other cardiovascular diseases, and neurological diseases. Progress in the development of these therapies depends on the ability to monitor cell delivery, migration and therapeutic action at the disease site, using imaging and other non-invasive technologies. If breakthroughs could be made along these lines, it would not only be of enormous benefit to the citizens of the state of California, but would also greatly reduce healthcare costs. From a broader research perspective, the state of California is the front-runner in stem cell research, having gathered not only private investments, as demonstrated by the numerous biotechnology companies that are developing innovative tools, but also extensive public funds that allows the state, through CIRM, to sponsor stem cell research in public and private institutions. In order to preserve the leadership position and encourage research on stem cells, CIRM is calling for research proposals to develop innovative tools and technologies that will overcome current roadblocks in translational stem cell research. This proposal will benefit the state by providing important new technology that will be valuable for both basic and translational stem cell research. A key bottleneck to the further development and translation of new stem cell therapies is the inability to track stem cells through a human body. It is possible to image stem cells using embedded optical fluorescence labels, but optical imaging does not permit tracking of cells deep in tissue. Other imaging modalities and their associated cellular labels (for example positron emission tomography) have also been used to track cells but do not have the sensitivity to detect rare or single cells. Finally, MRI has been used to track cells deep in tissue, down to the single cell level, but only by pre-loading cells with a non-renewable supply of iron oxide nanoparticles, which prevents long-term tracking and assessment of cell viability and function. We propose here to develop MRI technology and a new form of genetically-encoded, long-term cell labeling technology, to a much more advanced state than available at present. This will make it possible to use MRI to detect and follow cancer and stem cells as they migrate to and proliferate at the site of interest, even starting from the single cell stage. This will provide a technology that will help stem cell researchers, first and foremost in California, to understand stem cell behavior in a realistic in vivo environment. This technology will be translatable to future human stem cell research studies.
Progress Report: 
  • We have made good progress in the first year. This project involves four separate scientific teams, brought together for the first time, representing diverse backgrounds ranging from magnetic resonance imaging (MRI) physics and cell tracking (Dr. Rutt), microbiology (Dr. Matin), nano and magnetic characterization (Dr. Moler) and stem cell imaging in stroke models (Dr. Guzman). Substantial progress has been made by all four teams, and we are starting to see important interactions between the teams. An overall summary of progress is that we have evaluated three different bacterial genes (magA, mms6, mamB) in one mammalian cell line (MDA-MB-231BR) and have shown significant iron accumulation in vitro with two of these genes, which is a very positive result implying that these genes may have the required characteristics to act as "reporter genes" for MRI-based tracking of cells labeled with these genes. MR imaging of mouse brain specimens has yielded promising results and in vivo imaging experiments are underway at medium MRI field strength (3 Tesla). At the same time, we are ramping up our higher field, higher sensitivity MR imaging methods and will be ready to evaluate the different variations of our MR reporter gene at 7 Tesla (the highest magnetic field widely available for human MRI) in the near future. Finally, methods to perform quantitative characterization of our reporter cells are being developed, with the goal of being able to characterize magnetic properties down to the single cell level, and also to be able to assess iron loading levels down to the single level in brain tissue slices.
  • We have made good progress in the second year. This project involves four separate scientific teams, brought together for the first time for this project, representing diverse backgrounds ranging from magnetic resonance imaging (MRI) physics and cell tracking (Dr. Rutt), microbiology (Dr. Matin), nano and magnetic characterization (Dr. Moler) and imaging reporter development and testing in small animal models of disease (Dr. Contag). Substantial progress has been made by all four teams, and we are starting to see important interactions between the teams.
  • An overall summary of progress is that we have been evaluating three different bacterial genes (magA, mms6, mamB) in two mammalian cell lines (MDA-MB-231BR and DAOY). In year I we had shown significant iron accumulation in vitro with two of these genes, which was a very positive result implying that these genes may have the required characteristics to act as "reporter genes" for MRI-based tracking of cells labeled with these genes. In year 2, we diversified and intensified the efforts to achieve expression of one or more of the bacterial genes in different cell lines, using different genetic constructs. We began a concerted effort to achieve optical labeling such that we could visualize the gene expression and to identify sub-cellular localization of the report gene products.
  • We obtained promising results from MR imaging of mouse brain. In vivo imaging experiments were accomplished at medium MRI field strength (3 Tesla). At the same time, we ramped up our higher field, higher sensitivity MR imaging methods and began to evaluate the sensitivity gains enabled at the higher magnetic field strength of 7 Tesla (the highest magnetic field widely available for human MRI
  • Finally, methods to perform quantitative characterization of our reporter cells were developed, with the goal of being able to characterize magnetic properties down to the single cell level, and also to be able to assess iron loading levels down to the single level in brain tissue slices.
  • We have made good progress in the third year. This project involves four separate scientific teams, brought together for the first time for this project, representing diverse backgrounds ranging from magnetic resonance imaging (MRI) physics and cell tracking (Dr. Rutt), microbiology (Dr. Matin), nano and magnetic characterization (Dr. Moler) and imaging reporter development and testing in small animal models of disease (Dr. Contag). Substantial progress has been made by all four teams, and we have benefited from important interactions between all teams in this third year.
  • An overall summary of progress is that we evaluated several iron-binding bacterial genes (magA, mamB, mms6, mms13), both singly and doubly, in two mammalian cell lines (MDA-MB-231BR and DAOY). In year 2, we diversified and intensified the efforts to achieve expression of one or more of the bacterial genes in different cell lines, using different genetic constructs. We completed an effort to achieve optical labeling such that we could visualize the gene expression and to identify sub-cellular localization of the report gene products. In year 3, while continuing to face challenges with single gene constructs, we succeeded in finding substantial iron uptake in cells containing unique double gene expression, notably magA and mms13.
  • We completed much of the development of our higher field, higher sensitivity MR imaging methods and evaluated the sensitivity gains enabled at the higher magnetic field strength of 7 Tesla (the highest magnetic field widely available for human MRI).
  • Finally, we demonstrated novel nanomagnetic methods to characterize our reporter cells, able to characterize magnetic properties down to the single cell level.

Use of hiPSCs to develop lead compounds for the treatment of genetic diseases

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-01920
ICOC Funds Committed: 
$1 833 054
Disease Focus: 
Neurological Disorders
Pediatrics
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
This study will use Ataxia-Telangiectasia (A-T), an early-onset inherited neurodegenerative disease of children, as a model to study the mechanisms leading to cerebellar neurodegeneration and to develop a drug that can slow or halt neurodegeneration. We will start with skin cells that were originally grown from biopsies of patients with A-T who specifically carry “nonsense” type of mutations in the ATM gene. We will convert these skin cells to stem cells capable of forming neural cells that are lacking in the brain (cerebellum) of A-T patients; presumably these neural cells need ATM protein to develop normally. We will then test the effects of our most promising new “readthrough compounds” (RTCs) on the newly-developed neural cells. Our lab has been developing the drugs over the past six years. At present, there is no other disease model (animal or in a test tube) for evaluating the effects of RTCs on the nervous system and its development. Nor is there any effective treatment for the children with A-T or other progressively-deteriorating ataxias. Success in this project would open up at least three new areas for understanding and treating neurodegenerative diseases: 1) the laboratory availability of human neural cells with specific disease-causing mutations; 2) a new approach to learning how the human brain develops and 3) a new class of drugs (RTCs) that correct nonsense mutations, even in the brain, and may correct neurodegeneration.
Statement of Benefit to California: 
This project seeks to merge the expertise of two major research cultures: one with long-standing experience in developing a treatment for a progressive childhood-onset disease called Ataxia-telangiectasia and another with recent success in converting skin cells into cells of the nervous system. California citizens will benefit by finding new ways to treat neurodegenerative diseases, like A-T, Parkinson and Alzheimer, and expanding the many possible applications of stem cell technology to medicine. More specifically, we will construct a new “disease in a dish” model for neurodegeneration, and this will enable our scientists to test the positive and negative effects of a new class of drugs for correcting inherited diseases/mutations directly on brain cells. These advances will drastically decrease drug development costs and will stimulate new biotech opportunities and increase tax revenues for California, while also training the next generation of young scientists to deliver these new medical products to physicians and patients within the next five years.
Progress Report: 
  • No effective treatments are available for most neurodegenerative diseases. This study uses Ataxia-Telangiectasia (A-T), an early-onset inherited neurodegenerative disease of children, as a model to study the mechanisms leading to cerebellar neurodegeneration and to develop a drug that can slow or halt neurodegeneration. Aim1 proposed to use “Yamanaka factors” to reprogram A-T patient-derived skin fibroblasts, which carry nonsense mutations that we have shown can be induced by RTCs to express full-length and functional ATM protein, into iPSCs. We have successfully reprogrammed A-T fibroblasts to hiPSCs and teratoma formation shows their pluripotency. Aim2 will use these established iPSCs to model neurodegeneration, focusing on differentiation to cerebellar cells, such as Purkinje cells and granule cells. We have generated the Purkinje cell promoter –driven GFP reporter system and will use this system to examine the differentiation capacity of A-T iPSCs to Purkinje cells. Aim3 will utilize the newly-developed neural cells carrying disease-causing ATM nonsense mutations as targets for evaluating the potential therapeutic effects of leading RTCs. We have already started to test the efficacy and toxicity of our lead RTC compounds on A-T iPSC-derived neural progenitor cells. The continuation of this study will help us to pick up one promising RTC compound for IND application. This project is on the right track towards its objective for the development of disease models with hiPSCs and the test of our lead small molecule compounds for the treatment of A-T or other neurodegenerative diseases.
  • No effective treatments are available for most neurodegenerative diseases. This study uses Ataxia-Telangiectasia (A-T), an early-onset inherited neurodegenerative disease of children, as a model to study the mechanisms leading to cerebellar neurodegeneration and to develop a drug that can slow or halt neurodegeneration. Aim1 proposed to use “Yamanaka factors” to reprogram A-T patient-derived skin fibroblasts, which carry nonsense mutations that we have shown can be induced by RTCs to express full-length and functional ATM protein, into iPSCs. Aim2 will use these established iPSCs to model neurodegeneration, focusing on differentiation to cerebellar cells, such as Purkinje cells and granule cells. Aim3 will utilize the newly-developed neural cells carrying disease-causing ATM nonsense mutations as targets for evaluating the potential therapeutic effects of leading RTCs.
  • During the past two years of this project, we established Ataxia-telangiectasia (A-T) patient-derived iPSC lines from two patients which contain nonsense mutations and splicing mutations. These two lines are currently used for testing the mutation-targeted therapies with small molecule readthrough (SMRT) compounds and antisense morpholino oligonucleotides (AMOs). Manuscript describing this work was recently accepted, showing that SMRT compounds can abrogate phenotypes of A-T iPSC-derived neural cells
  • This is the third year (last year) progress report. During the first two years of this project, we have already established two Ataxia-telangiectasia (A-T) patient-derived iPSC lines which contain nonsense mutations and splicing mutations, respectively. These two lines are currently used for testing the mutation-targeted therapies with small molecule readthrough (SMRT) compounds and antisense morpholino oligonucleotides (AMOs). In the third year, we have formally published our results from the first two years’ research work in Nature Communications (Lee et al., 2013). In the last year, we continue to make progresses in the characterization of A-T iPSCs and their derived neuronal cells as well as developing the mutation-targeted therapies for neurodegeneration diseases

Pages

Subscribe to RSS - Neurological Disorders

© 2013 California Institute for Regenerative Medicine