Parkinson's Disease

Coding Dimension ID: 
313
Coding Dimension path name: 
Neurological Disorders / Parkinson's Disease

Engineering Defined and Scaleable Systems for Dopaminergic Neuron Differentiation of hPSCs

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-02022
ICOC Funds Committed: 
$1 493 928
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
iPS Cell
oldStatus: 
Active
Public Abstract: 
Human pluripotent stem cells (hPSC) have the capacity to differentiate into every cell in the adult body, and they are thus a highly promising source of differentiated cells for the investigation and treatment of numerous human diseases. For example, neurodegenerative disorders are an increasing healthcare problem that affect the lives of millions of Americans, and Parkinson's Disease (PD) in particular exacts enormous personal and economic tolls. Expanding hPSCs and directing their differentiation into dopaminergic neurons, the cell type predominantly lost in PD, promises to yield cells that can be used in cell replacement therapies. However, developing technologies to create the enormous numbers of safe and healthy dopaminergic neurons required for clinical development and implementation represents a bottleneck in the field, because the current systems for expanding and differentiating hPSCs face numerous challenges including difficulty in scaling up cell production, concerns with the safety of some materials used in the current cell culture systems, and limited reproducibility of such systems. An emerging principle in stem cell engineering is that basic advances in stem cell biology can be translated towards the creation of “synthetic stem cell niches” that emulate the properties of natural microenvironments and tissues. We have made considerable progress in engineering bioactive materials to support hESC expansion and dopaminergic differentiation. For example, basic knowledge of how hESCs interact with the matrix that surrounds them has led to progress in synthetic, biomimetic hydrogels that have biochemical and mechanical properties to support hESC expansion. Furthermore, biology often presents biochemical signals that are patterned or structured at the nanometer scale, and our application of materials chemistry has yielded synthetic materials that imitate the nanostructured properties of endogenous ligands and thereby promise to enhance the potency of growth factors and morphogens for cell differentiation. We propose to build upon this progress to create general platforms for hPSC expansion and differentiation through two specific aims: 1) To determine whether a fully defined, three dimensional (3D) synthetic matrix for expanding immature hPSCs can rapidly and scaleably generate large cell numbers for subsequent differentiation into potentially any cell , and 2) To investigate whether a 3D, synthetic matrix can support differentiation into healthy, implantable human DA neurons in high quantities and yields. This blend of stem cell biology, neurobiology, materials science, and bioengineering to create “synthetic stem cell niche” technologies with broad applicability therefore addresses critical challenges in regenerative medicine.
Statement of Benefit to California: 
This proposal will develop novel tools and capabilities that will strongly enhance the scientific, technological, and economic development of stem cell therapeutics in California. The most important net benefit will be for the treatment of human diseases. Efficiently expanding immature hPSCs in a scaleable, safe, and economical manner is a greatly enabling capability that would impact many downstream medical applications. The development of platforms for scaleable and safe cell differentiation will benefit therapeutic efforts for Parkinson’s Disease. Furthermore, the technologies developed in this proposal are designed to be tunable, such that they can be readily adapted to numerous downstream applications. The resulting technologies have strong potential to benefit human health. Furthermore, this proposal directly addresses several research targets of this RFA – the development and validation of stem cell scale-up technologies including novel cell expansion methods and bioreactors for both human pluripotent cells and differentiated cell types – indicating that CIRM believes that the proposed capabilities are a priority for California’s stem cell effort. While the potential applications of the proposed technology are broad, we will apply it to a specific and urgent biomedical problem: developing systems for generating clinically relevant quantities of dopaminergic neurons from hPSCs, part of a critical path towards developing therapies for Parkinson’s disease. This proposal would therefore work towards developing capabilities that are critical for hPSC-based regenerative medicine applications in the nervous system to clinically succeed. The principal investigator and co-investigator have a strong record of translating basic science and engineering into practice through interactions with industry, particularly within California. Finally, this collaborative project will focus diverse research groups with many students on an important interdisciplinary project at the interface of science and engineering, thereby training future employees and contributing to the technological and economic development of California.
Progress Report: 
  • Human pluripotent stem cells (hPSC) have the capacity to differentiate into every cell in the adult body, and they are thus a highly promising source of differentiated cells for the investigation and treatment of numerous human diseases. For example, neurodegenerative disorders are an increasing healthcare problem that affect the lives of millions of Americans, and Parkinson's Disease (PD) in particular exacts enormous personal and economic tolls. Expanding hPSCs and directing their differentiation into dopaminergic neurons, the cell type predominantly lost in PD, promises to yield cells that can be used in cell replacement therapies. However, developing technologies to create the enormous numbers of safe and healthy dopaminergic neurons required for clinical development and implementation represents a bottleneck in the field, because the current systems for expanding and differentiating hPSCs face numerous challenges including difficulty in scaling up cell production, concerns with the safety of some materials used in the current cell culture systems, and limited reproducibility of such systems.
  • This project has two central aims: 1) To determine whether a fully defined, three dimensional (3D) synthetic matrix for expanding immature hPSCs can rapidly and scaleably generate large cell numbers for subsequent differentiation into potentially any cell , and 2) To investigate whether a 3D, synthetic matrix can support differentiation into healthy, implantable human DA neurons in high quantities and yields. In the first year of this project, we have made progress in both aims. Specifically, we are conducting high throughput studies to optimize matrix properties in aim 1, and we have developed a material formulation in aim 2 that supports a level of DA differentiation that we are now beginning to optimize with a high throughput approach.
  • This blend of stem cell biology, neurobiology, materials science, and bioengineering to create “synthetic stem cell niche” technologies with broad applicability therefore addresses critical challenges in regenerative medicine.
  • Human pluripotent stem cells (hPSC) have the capacity to differentiate into every cell in the adult body, and they are thus a highly promising source of differentiated cells for the investigation and treatment of numerous human diseases. For example, neurodegenerative disorders are an increasing healthcare problem that affect the lives of millions of Americans, and Parkinson's Disease (PD) in particular exacts enormous personal and economic tolls. Expanding hPSCs and directing their differentiation into dopaminergic neurons, the cell type predominantly lost in PD, promises to yield cells that can be used in cell replacement therapies. However, developing technologies to create the enormous numbers of safe and healthy dopaminergic neurons required for clinical development and implementation represents a bottleneck in the field, because the current systems for expanding and differentiating hPSCs face numerous challenges including difficulty in scaling up cell production, concerns with the safety of some materials used in the current cell culture systems, and limited reproducibility of such systems.
  • This project has two central aims: 1) To determine whether a fully defined, three dimensional (3D) synthetic matrix for expanding immature hPSCs can rapidly and scaleably generate large cell numbers for subsequent differentiation into potentially any cell , and 2) To investigate whether a 3D, synthetic matrix can support differentiation into healthy, implantable human DA neurons in high quantities and yields. In the first year of this project, we have made progress in both aims. Specifically, we are conducting high throughput studies to optimize matrix properties in aim 1, and we have developed a material formulation in aim 2 that supports a level of DA differentiation that we are now beginning to optimize with a high throughput approach.
  • This blend of stem cell biology, neurobiology, materials science, and bioengineering to create “synthetic stem cell niche” technologies with broad applicability therefore addresses critical challenges in regenerative medicine.

Editing of Parkinson’s disease mutation in patient-derived iPSCs by zinc-finger nucleases

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-01965
ICOC Funds Committed: 
$1 327 983
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
The goal of this proposal is to establish a novel research tool to explore the molecular basis of Parkinson’s disease (PD) - a critical step toward the development of new therapy. To date, a small handful of specific genes and associated mutations have been causally linked to the development of PD. However, how these mutations provoke the degeneration of specific neurons in the brain remains poorly understood. Moreover, conducting such genotype-phenotype studies has been hampered by two significant experimental problems. First, we have historically lacked the ability to model the relevant human cell types carrying the appropriate gene mutation. Second, the genetic variation between individuals means that the comparison of a cell from a disease-carrier to a cell derived from a normal subject is confounded by the many thousands of genetic changes that normally differentiate two individuals from one another. Here we propose to combine two powerful techniques – one genetic and one cellular – to overcome these barriers and drive a detailed understanding of the molecular basis of PD. Specifically, we propose to use zinc finger nucleases (ZFNs) in patient-derived induced pluripotent stem cells (iPSC) to accelerate the generation of a panel of genetically identical cell lines differing only in the presence or absence of a single disease-linked gene mutation. iPSCs have the potential to differentiate into many cell types – including dopaminergic neurons that become defective in PD. Merging these two technologies will thus allow us to study activity of either the wild-type or the mutant gene product in cells derived from the same individual, which is critical for elucidating the function of these disease-related genes and mutations. We anticipate that the generation of these isogenic cells will accelerate our understanding of the molecular causes of PD, and that such cellular models could become important tools for developing novel therapies.
Statement of Benefit to California: 
Approx. 36,000-60,000 people in the State of California are affected with Parkinson’s disease (PD) – a number that is estimated to double by the year 2030. This debilitating neurodegenerative disease causes a high degree of disability and financial burden for our health care system. Importantly, recent work has identified specific gene mutations that are directly linked to the development of PD. Here we propose to exploit the plasticity of human induced pluripotent stem cells (iPSC) to establish models of diseased and normal tissues relevant to PD. Specifically, we propose to take advantage of recent developments allowing the derivation of stem cells from PD patients carrying specific mutations. Our goal is to establish advanced stem cell models of the disease by literally “correcting” the mutated form of the gene in patient cells, therefore allowing for direct comparison of the mutant cells with its genetically “repaired” yet otherwise identical counterpart. These stem cells will be differentiated into dopaminergic neurons, the cells that degenerate in the brain of PD patients, permitting us to study the effect of correcting the genetic defect in the disease relevant cell type as well as provide a basis for the establishment of curative stem cells therapies. This collaborative project provides substantial benefit to the state of California and its citizens by pioneering a new stem cell based approach for understanding the role of disease causing mutations via “gene repair” technology, which could ultimately lead to advanced stem cell therapies for Parkinson’s disease – an unmet medical need without cure or adequate long-term therapy.
Progress Report: 
  • The goal of this proposal was to establish a novel research tool to explore the molecular basis of Parkinson’s disease (PD) - a critical step toward the development of new therapy. To date, a small handful of specific genes and associated mutations have been causally linked to the development of PD. However, how these mutations provoke the degeneration of specific neurons in the brain remains poorly understood.
  • In the first year of the grant, we have successfully modified the LRRK2 G2019S mutation in patient-derived induced pluripotent stem cells (iPSC) using zinc-finger technology. We created several clonal lines with the gene correction and also with a knockdown of the LRRK2 gene.
  • We characterized these lines for pluripotency, karyotype, and differentiation potential and currently, we are testing the lines for functional differences in the next reporting period and will generate iPSCs with specific LRRK2 mutations introduced using zinc-finger technology.
  • Despite the growing number of diseases linked to single gene mutations, determining the molecular mechanisms by which such errors result in disease pathology has proven surprisingly difficult. The ability to correlate disease phenotypes with a specific mutation can be confounded by background of genetic and epigenomic differences between patient and control cells. To address this problem, we employed zinc finger nucleases-based genome editing in combination with a newly developed high-efficiency editing protocol to generate isogenic patient-derived induced pluripotent stem cells (iPSC) differing only at the most common mutation for Parkinson's disease (PD), LRRK2 p.G2019S. We show that correction of the LRRK2 p.G2019S mutation rescues a panel of neuronal cell phenotypes including reduced dopaminergic cell number, impaired neurite outgrowth and mitochondrial dysfunction. These data reveal that PD-relevant cellular pathophysiology can be reversed by genetic repair, thus confirming the causative role of this prevalent mutation – a result with potential translational implications.
  • The goal of this proposal has been to establish a novel research tool to explore the molecular basis of Parkinson’s disease (PD) - a critical step toward the development of new therapies. To date, a small handful of specific genes and associated mutations have been causally linked to the development of PD. However, how these mutations provoke the degeneration of specific neurons in the brain remains poorly understood.
  • Moreover, conducting such genotype-phenotype studies has been hampered by two significant experimental problems. First, we have historically lacked the ability to model the relevant human cell types carrying the appropriate gene mutation. Second, the genetic variation between individuals means that the comparison of a cell from a disease-carrier to a cell derived from a normal subject is confounded by the many thousands of genetic changes that normally differentiate two individuals from one another.
  • We proposed to use zinc finger nucleases (ZFNs) in patient-derived induced pluripotent stem cells (iPSC) to accelerate the generation of a panel of genetically identical cell lines differing only in the presence or absence of a single disease-linked gene mutation.
  • To this end, we have successfully generated a panel of LRRK2 isogenic cell lines that differ only in "one building block" in the genomic DNA of a cell which can cause PD, therefore we genetically 'cured' the cells in the culture dish. These lines are invaluable because they are a set of tools that allow to study the effect of this mutation in the context of neurodegeneration and cell death. We received interest from many outside academic laboratories and industry to distribute these novel tools and these cell lines will hopefully lead to the discovery of new drugs that can halt or even reverse PD.

Developmental Candidates for Cell-Based Therapies for Parkinson's Disease (PD)

Funding Type: 
Early Translational I
Grant Number: 
TR1-01267
ICOC Funds Committed: 
$5 416 003
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Collaborative Funder: 
Victoria, Australia
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
iPS Cell
oldStatus: 
Active
Public Abstract: 
Parkinson's Disease (PD) is a devastating disorder, stealing vitality from vibrant, productive adults & draining our health care dollars. It is also an excellent model for studying other neurodegenerative conditions. We have discovered that human neural stem cells (hNSCs) may exert a significant beneficial impact in the most authentic, representative, & predictive animal model of actual human PD. Interestingly, we have learned that, while some of the hNSCs differentiate into replacement dopamine (DA) neurons, much of the therapeutic benefit derived from a stem cell action we discovered a called the “Chaperone Effect” – even hNSC-derived cells that do not become DA neurons contributed to the reversal of severe Parkinsonian symptoms by protecting endangered host DA neurons & their connections, restoring equipoise to the host nigrostriatal system, and reducing pathological hallmark of PD. While the ultimate goal may someday be to replace dead DA neurons, the Chaperone Effect represents a more tractable near-term method of using cells to address this serious condition. However, many questions remain in the process of developing these cellular therapeutic candidates. A major question is what is the best (safest, most efficacious) way to generate hNSCs? Directly from the fetal brain? From human embryonic stem cells? From skin cells reprogrammed to act like stem cells? Also, would benefits be even greater if, in addition to harnessing the Chaperone Effect, the number of stem cell-derived DA neurons was also increased? And could choosing the right stem cell type &/or providing the right supportive molecules help achieve this? This study seeks to answer these questions. Importantly, we will do so using the most representative model of human PD, a model that not only mimics all of the human symptomatology but also all the side-effects of treatment; inattention to this latter aspect plagued earlier clinical trials in PD. A successful therapy for PD would not only be of great benefit for the many patients who now suffer from the disease, or who are likely to develop it as they age, but the results will help with other potential disease applications due to greater understanding of stem cell biology (particularly the Chaperone Effect, which represents “low hanging fruit”) as well as their potential complications and side effects.
Statement of Benefit to California: 
Not only is Parkinson's Disease (PD) a devastating disease in its own right-- impairing typically vibrant productive adults & draining our health care dollars -- but it is also an excellent model for studying other neurodegenerative diseases. We have discovered that stem cells may actually exert a beneficial impact independent of dopamine neuron replacement. As a result of a multiyear study performed by our team, implanting human neural stem cells (hNSCs) into the most authentic, representative, and predictive animal model of actual human PD, we learned that the cells could reverse severe Parkinsonian symptoms by protecting endangered host dopaminergic (DA) neurons, restoring equipoise to the cytoarchitecture, preserving the host nigrostriatal pathway, and reducing alpha-synuclein aggregations (a pathological hallmark of PD). This action, called the "Chaperone Effect" represents a more tractible near-term method of using cells to address an unmet medical need. However, many questions remain in the process of developing these cellular therapeutic candidates. A major question is what is the best (safest & most efficacious way) to generate hNSCs? Directly from the fetal brain? From human embryonic stem cells? From human induced pluripotent cells? Also, would benefits be even greater if, in addition to harnessing the Chaperone Effect, the number of donor-derived DA neurons was also increased? And could choosing the right stem cell type &/or providing the right supportive molecules help achieve this? This study seeks to answer these questions. Importantly, we will continue to use the most representative model of human PD to do so, a model that not only mimics all of the human symptomatology but also all the side-effects of treatment; inattention to this latter aspect plagued earlier clinical trials in PD. Because of the unique team enlisted, these studies can be done at a fraction of the normal cost, allowing for parsimony in the use of research dollars, clearly a benefit to California taxpayers. Not only might California patients benefit in terms of their well-being, and the economy benefit from productive adults re-entering the work force & aging adults remaining in the work force, but it is likely that new intellectual property will emerge that will provide additional financial benefit to California stakeholders, both citizens & companies.
Progress Report: 
  • Parkinson's Disease (PD) is a devastating disorder, stealing vitality from vibrant, productive adults & draining our health care dollars. It is also an excellent model for studying other neurodegenerative conditions. We have discovered that human neural stem cells (hNSCs) may exert a significant beneficial impact in the most authentic, representative, & predictive animal model of actual human PD (the adult African/St. Kitts Green Monkeys exposed systemically to the neurotoxin MPTP). Interestingly, we have learned that, while some of the hNSCs differentiate into replacement dopamine (DA) neurons, much of the therapeutic benefit derived from a stem cell action we discovered called the “Chaperone Effect” – even hNSC-derived cells that do not become DA neurons contributed to the reversal of severe Parkinsonian symptoms by protecting endangered host DA neurons & their connections, restoring equipoise to the host nigrostriatal system, and reducing pathological hallmark of PD. While the ultimate goal may someday be to replace dead DA neurons, the Chaperone Effect represents a more tractable near-term method of using cells to address this serious condition. However, many questions remain in the process of developing these cellular therapeutic candidates. A major question is what is the best (safest, most efficacious) way to generate hNSCs? Directly from the fetal brain? From human embryonic stem cells? From skin cells reprogrammed to act like stem cells? Also, would benefits be even greater if, in addition to harnessing the Chaperone Effect, the number of stem cell-derived DA neurons was also increased? And could choosing the right stem cell type &/or providing the right supportive molecules help achieve this? This international study – which involves scientists from California, Madrid, Melbourne -- has been seeking to answer these questions. Importantly, we have been doing so using the most representative model of human PD, a model that not only mimics all of the human symptomatology but also all the side-effects of treatment; inattention to this latter aspect plagued earlier clinical trials in PD. A successful therapy for PD would not only be of great benefit for the many patients who now suffer from the disease, or who are likely to develop it as they age, but the results will help with other potential disease applications due to greater understanding of stem cell biology (particularly the Chaperone Effect, which represents “low hanging fruit”) as well as their potential complications and side effects.
  • To date, we have transplanted nearly 40 Parkinsonian non-human primates (NHPs) with a range of the different stem cell types described above. We have been able to generate neurons from some of these stem cells that appear to have the characteristics of the desired A9-type midbrain dopaminergic neuron lost in PD. Following transplantation, some of these stem cell derivatives appear to survive, integrate, & behave like dopaminergic neurons. Preliminary behavioral analysis of some engrafted NHPs offers encouraging results, suggesting an improvement in the Parkinsonism score in some of the animals. These NHPs will need to be followed for 1 year to insure that improvement continues & that no adverse events intervene. Over the next year, more stem cell candidates will be tested as we further optimize their preparation & differentiation.
  • We have made substantial progress in what will amount to the largest and most comprehensive head-to-head behavioral analysis of stem cell transplanted MPTP-NHPs to date and have identified cell types that show dramatic improvement in this model. Compared to the improvement observed with undifferentiated fetal CNS-derived hNSCs (the stem cell type in used Redmond et al, PNAS, 2007), 3 human stem cell candidates have shown a larger improvement in PS.
  • Summary of Achievements for this reporting period
  • • Comprehensive Behavioral data collection of 84 monkeys comprising over 10,000 observation data points
  • • Statistical analysis of Behavioral data collected to date identifies striking and statistically significant improvements in PS for several stem cell types. (Accordingly, NO-GO (or near NO-GO) cell types have been identified via comparison of levels of improvement or no improvement) [Figure 1]
  • • DNA samples collected in order to pursue the first ever complete genome sequencing of the Vervet in collaboration with the Washington University Genome Center
  • • Biochemistry sample processing and data collection of a 2nd large batch of samples completed.
  • The identification and development of an ideal cell-based therapy for a complex neurodegenerative disease requires the rigorous evaluation of both efficacy and safety of different sources and subtypes of hNSCs. The objective of this project has been to fully evaluate and identify the optimal stem cell type for a cell based therapy for refractory Parkinson’s Disease (PD) using the systemically MPTP-lesioned Old World non-human primate (NHP) (the St. Kitts Green Monkey) the most authentic animal model of the actual human disease. Among a list of plausible potentially therapeutic stem cell sources, 7 candidates have been evaluated head-to-head. The intent has been that the stem cell type (and its derivatives) safely producing the largest improvement in behavioral scores (based on a well-established NHP PD score – the Parkinson’s Factor Score [PFS] or ParkScore (which closely parallels the Hoehn–Yahr scale used in human patients, and is an accurate functional read-out of nigrostriatal dopamine [DA] activity) -- as well as a Healthy Behaviors Score [HBS] (similar to the activities-of-daily-living [ADL] on the major Parkinson’s rating scale and allows quantification of adverse events) -- will be advanced towards IND-enabling studies, to an actual IND filing, and ultimately a clinical trial.
  • Candidate cells have been transplanted into specific sub-regions of the nigrostriatal pathway of MPTP-lesioned NHPs. Animals undergo behavioral scoring for analysis of severity of Parkinsonian behavior at multiple time points pre- and post-cell transplantation. At sacrifice, biochemical measurements of DA content are made. Tissue is also analyzed to determine the fate of donor cells; the status of the host nigrostriatal pathway; the number of alpha-synuclein aggregates; degree of inflammation; any evidence of adverse events (e.g., tumor formation, cell overgrowth, emergence of cells inappropriate to the CNS).
  • We have made substantial progress in what will amount to the largest and most comprehensive head-to-head analysis of stem cell transplanted into any disease model to date, let alone behavioral analysis into a primate model of PD. Behavioral data have been collected on ~100 monkeys comprising >10,000 observation data points. We have identified a single Developmental Candidate (DC) that shows consistent and dramatic improvement in severely Parkinsonian NHPs (i.e., a significant decrease in Parkinsonian symptoms over the entire evaluation period), reflecting a restitution of DA function – human embryonic stem cell (hESC-derived) ventral mesencephalic (VM) precursors. We also suggest adding a mechanism to these cells for insuring unambiguous safety and invariant lineage commitment (a construct already generated and inserted into this DC, and recently engrafted into some initial monkeys).
  • We believe are ready for IND-enabling studies, including additional long-term pre-clinical behavioral studies of hESC-derived hVM cells that bear the above-mentioned “safety construct” – combined with additional biochemical assays of DA metabolism, histological assessments, serial profiling to insure genomic stability. Scale-up conditions for this DC are defined and reproducible and a working cell bank has been established.
  • Parkinson's Disease (PD) is a devastating disorder that is caused by the loss of a particular type of neuron in the brain. PD patients show movement abnormalities which worsen over time and significantly reduce the quality of life. Current treatments reduce the severity of these problems but very often the efficacy of these treatments gradually weakens over time leaving patients with few therapeutic options, some of which carry significant unwanted side effects. Since the development of growing undifferentiated human stem cells in the late 1990’s, much has been learned in regards to how to make these cells develop into neuronal cells, in particular the same type of neuron that is lost in a PD patient. Therefore, a cellular therapy has been envisioned for the treatment of PD, however, the complex nature of this disease requires higher level models in which potential therapies can be accurately evaluated before moving a therapy to clinical trials.
  • Previous work using human fetal tissue showed improvement of PD symptoms in an animal model and human clinical trials, however, distinctive movement abnormalities arose from the use of this treatment and combined with the ethical issues, it is not a viable therapeutic strategy. Recent work suggests that the use of embryonic stem cells for the treatment of PD may be possible but a direct comparison of the different types of cells derived from these was lacking. Additionally, tumors caused by these cells have been reported.
  • Our research efforts funded by this CIRM award allowed us to complete the largest stem cell therapy comparison for PD using the most accurate disease model available. Over the last 3 years we have evaluated the efficacy of 8 potential therapeutic cell types and 2 control cell types (in addition to various other control groups to rule out any possibility that the observations may have resulted from something other than cells). From these efforts we have confidently identified a strategy for producing cells that show a dramatic reduction in the PD symptoms in this model and these cells will be developed for clinical trials. Furthermore, we have incorporated a critical step for ensuring the safety of this cell therapy by including a purification technique that removes cells that may give rise to tumors or produce unknown or unwanted effects.

Misregulated Mitophagy in Parkinsonian Neurodegeneration

Funding Type: 
Basic Biology V
Grant Number: 
RB5-06935
ICOC Funds Committed: 
$1 174 943
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
iPS Cell
oldStatus: 
Closed
Public Abstract: 
Parkinson’s disease (PD), is one of the leading causes of disabilities and death and afflicting millions of people worldwide. Effective treatments are desperately needed but the underlying molecular and cellular mechanisms of Parkinson’s destructive path are poorly understood. Mitochondria are cell’s power plants that provide almost all the energy a cell needs. When these cellular power plants are damaged by stressful factors present in aging neurons, they release toxins (reactive oxygen species) to the rest of the neuron that can cause neuronal cell death (neurodegeneration). Healthy cells have an elegant mitochondrial quality control system to clear dysfunctional mitochondria and prevent their resultant devastation. Based on my work that Parkinson’s associated proteins PINK1 and Parkin control mitochondrial transport that might be essential for damaged mitochondrial clearance, I hypothesize that in Parkinson’s mutant neurons mitochondrial quality control is impaired thereby leading to neurodegeneration. I will test this hypothesis in iPSC (inducible pluripotent stem cells) from Parkinson’s patients. This work will be a major step forward in understanding the cellular dysfunctions underlying Parkinson’s etiology, and promise hopes to battle against this overwhelming health danger to our aging population.
Statement of Benefit to California: 
Parkinson's disease (PD), one of the most common neurodegenerative diseases, afflicts millions of people worldwide with tremendous global economic and societal burdens. About 500,000 people are currently living with PD in the U.S, and approximate 1/10 of them live in California. The number continues to soar as our population continues to age. An effective treatment is desperately needed but the underlying molecular and cellular mechanisms of PD’s destructive path remain poorly understood. This proposal aims to explore an innovative and critical cellular mechanism that controls mitochondrial transport and clearance via mitophagy in PD pathogenesis with elegant employment of bold and creative approaches to live image mitochondria in iPSC (inducible pluripotent stem cells)-derived dopaminergic neurons from Parkinson’s patients. This study is closely relevant to public health of the state of California and will greatly benefit its citizens, as it will illuminate the pathological causes of PD and provide novel targets for therapuetic intervention.

Stem Cell Pathologies in Parkinson’s disease as a key to Regenerative Strategies

Funding Type: 
Research Leadership 10
Grant Number: 
LA1_C10-06535
ICOC Funds Committed: 
$6 718 471
Disease Focus: 
Parkinson's Disease
Neurological Disorders
oldStatus: 
Closed
Public Abstract: 
Protection and cell repair strategies for neurodegenerative diseases such as Parkinson’s Disease (“PD”) depend on well-characterized candidate human stem cells that are robust and show promise for generating the neurons of interest following stimulation of inherent brain stem cells or after cell transplantation. These stem cells must also be expandable in the culture dish without unwanted growth and differentiation into cancer cells, they must survive the transplantation process or, if endogenous brain stem cells are stimulated, they should insinuate themselves in established brain networks and hopefully ameliorate the disease course. The studies proposed for the CIRM Research Leadership Award have three major components that will help better understand the importance and uses of stem cells for the treatment of PD, and at the same time get a better insight into their role in disease repair and causation. First, we will characterize adult human neural stem cells from control and PD brain specimens to distinguish their genetic signatures and physiological properties of these cells. This will allow us to determine if there are stem cells that are pathological and fail in their supportive role in repairing the nervous system. Next, we will investigate a completely novel disease initiation and propagation mechanism, based on the concept that secreted vesicles from cells (also known as “exosomes”) containing a PD-associated protein, alpha-synuclein, propagate from cell-to cell. Our hypothesis is that these exosomes carry toxic forms of alpha-synuclein from cell to cell in the brain, thereby accounting disease spread. They may do the same with cells transplanted in patients with PD, thereby causing these newly transplanted cells designed to cure the disease, to be affected by the same process that causes the disease itself. This is a bottleneck that needs to be overcome for neurotransplantation to take its place as a standard treatment for PD. Our studies will address disease-associated toxicity of exosomal transmission of aggregated proteins in human neural precursor stem cells. Importantly, exosomes in spinal fluid or other peripheral tissues such as blood might represent a potentially early and reliable disease biomarker as well as a new target for molecular therapies aimed at blocking transcellular transmission of PD-associated molecules. Finally, we have chosen pre-clinical models with α-synucleinopathies to test human neural precursor stem cells as cell replacement donors for PD as well as interrogate, for the first time, their potential susceptibility to PD and contribution to disease transmission. These studies will provide a new standard of analysis of human neural precursor cells at risk for and contributing to pathology (so-called “stem cell pathologies”) in PD and other neurodegenerative diseases via transmission of altered or toxic proteins from one cell to another.
Statement of Benefit to California: 
According to the National Institute of Health, Parkinson’s disease (PD) is the second most common neurodegenerative disease in California and the United States (one in 100 people over 60 is affected) second only to Alzheimer’s Disease. Millions of Americans are challenged by PD, and according to the Parkinson’s Action Network, every 9 minutes a new case of PD is diagnosed. The cause of the majority of idiopathic PD is unknown. Identified genetic factors are responsible for less than 5% of cases and environmental factors such as pesticides and industrial toxins have been repeatedly linked to the disease. However, the vast majority of PD is thought to be etiologically multi-factorial, resulting from both genetic and environmental risk factors. Important events leading to PD probably occur in early or mid adult life. According to the Michael J. Fox Foundation, “…there is no objective test, or reliable biomarker for PD, so rate of misdiagnosis is high, and there is a seriously pressing need to develop better early detection approaches to be able to attempt disease-halting protocols at a non-symptomatic, so-called prodromal stage.” The proposed innovative and transformative research program will have a major direct impact for patients who live in California and suffer from PD and other related neurodegenerative diseases. If these high-risk high-pay-off studies are deemed successful, this new program will have tackled major culprits in the PD field. They could lead to a better understanding of the role of stem cells in health and disease. Furthermore they could greatly advance our knowledge of how the disease spreads throughout the brain which in turn could lead to entire new strategies to halt disease progression. In a similar manner these studies could lead to ways to prevent the disease from spreading to cells that have been transplanted to the brain of Parkinson’s patients in an attempt to cure their disease. This is critical for neurotransplantation to thrive as a therapeutic approach to treating PD. In addition, if we extend the cell-to-cell transmissible disease hypothesis to other neurodegenerative diseases, and cancer, the studies proposed here represent a new diagnostic approach and therapeutic targets for many diseases affecting Californians and humankind in general. This CIRM Research Leadership Award will not only have an enormous impact on understanding the cause of PD and developing new therapeutic strategies using stem cells and its technologies, this award will also be the foundation of creating a new Center for Translational Stem Cell Research within California. This could lead to further growth at the academic level and for the biotechnology industry, particularly in the area regenerative medicine.

Common molecular mechanisms in neurodegenerative diseases using patient based iPSC neurons

Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06079
ICOC Funds Committed: 
$1 506 420
Disease Focus: 
Huntington's Disease
Neurological Disorders
Parkinson's Disease
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
A major medical problem in CA is the growing population of individuals with neurodegenerative diseases, including Parkinson’s (PD) and Huntington’s (HD) disease. These diseases affect millions of people, sometimes during the prime of their lives, and lead to total incapacitation and ultimately death. No treatment blocks the progression of neurodegeneration. We propose to conduct fundamental studies to understand the basic common disease mechanisms of neurodegenerative disorders to begin to develop effective treatments for these diseases. Our work will target human stem cells made from cells from patients with HD and PD that are developed into the very cells that degenerate in these diseases, striatal neurons and dopamine neurons, respectively. We will use a highly integrated approach with innovative molecular analysis of gene networks that change the states of proteins in these diseases and state-of-the-art imaging technology to visualize living neurons in a culture dish to assess cause and effect relationships between biochemical changes in the cells and their gradual death. Importantly, we will test whether drugs effective in animal model systems are also effective in blocking the disease mechanisms in the human HD and PD neurons. These human preclinical studies could rapidly lead to clinical testing, since some of the drugs have already been examined extensively in humans in the past for treating other disorders and are safe.
Statement of Benefit to California: 
Neurodegenerative diseases, such as Parkinson’s (PD) and Huntington’s disease (HD), are devastating to patients and families and place a major financial burden on California. No treatments effectively block progression of any neurodegenerative disease. A forward-thinking team effort will allow highly experienced investigators in neurodegenerative disease and stem cell research to investigate common basic mechanisms that cause these diseases. Most important is the translational impact of our studies. We will use neurons and astrocytes derived from patient induced pluripotent stem cells to identify novel targets and discover disease-modifying drugs to block the degenerative process. These can be quickly transitioned to testing in preclinical and clinical trials to treat HD and other neurodegenerative diseases. We are building on an existing strong team of California-based investigators to complete the studies. Future benefits to California citizens include: 1) discovery and development of new HD treatments with application to other diseases, such as PD, that affect thousands of Californians, 2) transfer of new technologies and intellectual property to the public realm with resulting IP revenues to the state with possible creation of new biotechnology spin-off companies, and 3) reductions in extensive care-giving and medical costs. We anticipate the return to the State in terms of revenue, health benefits for its Citizens and job creation will be significant.
Progress Report: 
  • The goal of our study is to identify common mechanisms that cause the degeneration of neurons and lead to most neurodegenerative disorders. Our work focuses on the protein homeostasis pathways that are disrupted in many forms of neurodegeneration, including Huntington’s disease (HD) and Parkinson’s disease (PD). In this first reporting period we have made great progress in developing novel methods to probe the autophagy pathway in single cells. This pathway is involved in the turnover of misfolded proteins and dysfunction organelles. Using our novel autophagy assays, we have preliminary data that indicate that the autophagy pathway in neurons from HD patients is modulated compared to healthy controls. We have also begun validating small molecules that activate the autophagy pathway and we are now moving these inducers into human neurons from HD patients to see if they reduce toxicity or other disease related phenotypes. Using pathway analysis we have also identified specific genes within the proteostasis network that are modulated in HD. We are now testing whether modulating these genes in human neurons from HD patients can lead to a reduction in neurodegeneration. In the final part of this study we are investigating whether neurodegenerative diseases, such as HD and PD, share changes in similar genes or pathways, specifically those involved in protein homeostasis. We have now established a human neuron model for PD and have used it to identify potential targets that modulate the disease phenotype via changes in proteostasis. Using the assays, autophagy drugs and pathway analysis described above, we hope to identify overlapping targets that could potentially rescue disease associated phenotypes in both HD and PD.

Neural Stem Cell-Based Therapy For Parkinson’s Disease

Funding Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05431
ICOC Funds Committed: 
$99 976
Disease Focus: 
Parkinson's Disease
Neurological Disorders
oldStatus: 
Closed
Public Abstract: 
Ongoing degeneration of dopaminergic (DA) neurons in the midbrain is the hallmark of Parkinson’s disease (PD), a movement disorder that manifests with tremor, bradykinesia and rigidity. One million Americans live with PD and 60,000 are diagnosed with this disease each year. Although the cost is $25 billion per year in the United States alone, existing therapies for PD are only palliative and treat the symptoms but do not address the underlying cause. Levodopa, the gold standard pharmacological treatment to restore dopamine, is compromised over time by decreased efficacy and particularly increased side effects over time. Neural transplantation is a promising strategy for improving dopaminergic dysfunction in PD. The rationale behind neural transplantation is that grafting cells that produce DA into the denervated striatum will reestablish regulated neurotransmission and restore function. Indeed, over 20 years of research using fetal mesencephalic tissue as a source of DA neurons has demonstrated the therapeutic potential of cell transplantation therapy in animal model of PD and in human patients. However, there are limitations associated with primary human fetal tissue transplantation, including high tissue variability, lack of scalability, ethical concerns and inability to obtain an epidemiologically meaningful quantity of tissue. Thus, the control of the identity, purity and potency of these cells becomes exceedingly difficult and jeopardizes both the safety of the patient and the efficacy of the therapy. Thus the search of self-renewable sources of cells is a very worthwhile goal with societal importance and commercial application. Human neural stem cells are currently the only potential reliable and continuous source of homogenous and qualified populations of DA neurons for cell therapy for PD. Such cell source is ideal for developing a consistently safe and efficacious cellular product for treating large number of PD patients in California and throughout the world We have developed a human neural stem cell line with midbrain dopaminergic properties and the technology to make 75% of the neuronal population express dopamine. We have also shown that these cells are efficacious in the most authentic animal model of PD. We now propose to conduct the manufacturing of these cells in conjunction with the safety and efficacy testing to bring this much needed cellular product to PD patients and treat this devastating disease.
Statement of Benefit to California: 
In this grant application we propose to develop a unique technology to manufacture neurons that will be used to treat patients suffering from Parkinson’s disease. One million Americans live with PD and 60,000 are diagnosed with this disease each year. Although the cost is $25 billion per year in the United States alone, existing therapies for PD are only palliative and treat the symptoms but do not address the underlying cause. Levodopa, the gold standard pharmacological treatment to restore dopamine, is compromised over time by decreased efficacy and increased side effects. Human stem cells are currently the only potential reliable and continuous source of homogenous and qualified populations of DA neurons for cell therapy for PD. Such cell source is ideal for developing a consistently safe and efficacious cellular product for treating large number of PD patients in California and throughout the world We have developed a human neural stem cell line with midbrain dopaminergic properties and the technology to make 75% of the neuronal population express dopamine. We have also shown that these cells are efficacious in the most authentic animal model of PD. We now propose to conduct the manufacturing of these cells and safety and efficacy testing to bring this cell product to PD patients and treat this devastating disease. The CIRM grant will help us create further intellectual property pertaining to the optimization of the process of manufacturing of the cellular product we developed to treat PD. The grant will also create jobs at Californian institutions and contract companies we will work with to develop this product. Importantly, the intellectual property will be made available for licensing to biotechnology companies here in California to develop this product to treat the over 10 million people afflicted with PD world wide. Revenues from such a product will be beneficial to the California economy.
Progress Report: 
  • The planning award allowed the PI and members of the disease team to identify gaps in studies performed to date and strategically plan manufacturing and preclinical IND enabling studies to lead into a phase I clinical trial
  • The PI, Marcel Daadi, PhD assembled a team comprised of neurosurgeons, neurologists and scientists with expertise in Parkinson’s disease, a contract manufacturing organization (CMO) for cell production, a contract research organization (CRO) for the pharmacology and toxicology studies, and accomplished regulatory and project management consultants to work together on developing a cellular product for treating Parkinson’s disease.
  • Together with the members of the disease team, the PI established a detailed strategy to meet the overall goal of the project, to develop a human neural stem cell (NSC) line for transplantation into patients. The team put together a plan to manufacture the cells that included seven stages:
  • STAGE 1: Product manufacturing and process development in the PI laboratory, with CMO’s participation, in preparation for technology transfer including material sourcing, gap analysis of the current manufacturing and analytical process, development of product characterization profile, refinement of manufacturing and analytical procedures and development of requisite documentation.
  • STAGE 2: Technology transfer to CMO, comprised of training and establishing the necessary resources, perform the manufacturing process in house, demonstrate tech transfer and perform runs to manufacture GMP-like cell product suitable for non-GLP animal studies at the CRO facility.
  • STAGE 3: Manufacturing of GLP materials for use in the pre-clinical studies.
  • STAGE 4: Early pre-clinical non-GLP studies using materials that meet product release criteria. The preclinical studies will address critical issues such as delivery devise and approach, immuno-suppression regiment, dose-range finding study, imaging MRI/PET, micro-dialysis, immune response, behavioral outcome, dyskinesias, immunohistopathology and biochemical analysis.
  • STAGE 5: Formal GLP pre-clinical studies using the GMP materials manufactured at CMO with primary efficacy endpoint that is a significant change in the PD score without appearance of dyskinesias.
  • STAGE 6: Regulatory support activities, including pre-pre IND and pre-IND meetings, and compilation and filing of the IND.
  • STAGE 7: Full Process Qualification at the CMO, and manufacture of the GMP cell bank.
  • Among preclinical development studies proposed are a definitive single-dose toxicity and toxicokinetic study in rats with functional observation battery, a one year recovery period (GLP), tumorigenicity in NOD-SCID mice and study to determine dose-range for efficacy and safety in non-human primates.

hESC-derived NPCs Programmed with MEF2C for Cell Transplantation in Parkinson’s Disease

Funding Type: 
Disease Team Therapy Planning I
Grant Number: 
DR2-05272
ICOC Funds Committed: 
$96 448
Disease Focus: 
Parkinson's Disease
Neurological Disorders
oldStatus: 
Closed
Public Abstract: 
We proposes to use human embryonic stem cells (hESCs) differentiated into neural progenitor/stem cells (NPCs), but modified by transiently programming the cells with the transcription factor MEF2C to drive them more specifically towards dopaminergic (DA) neurons, representing the cells lost in Parkinson’s disease. We will select Parkinson’s patients that no longer respond to L-DOPA and related therapy for our study, because no alternative treatment is currently available. The transplantation of cells that become DA neurons in the brain will create a population of cells that secrete dopamine, which may stop or slow the progression of the disease. In this way, moderate to severely affected Parkinson’s patients will benefit. The impact of development of a successful cell-based therapy for late-stage Parkinson’s patients would be very significant. There are approximately one million people in the United States with Parkinson’s disease (PD) and about ten million worldwide. Though L-DOPA therapy controls symptoms in many patients for a period of time, most reach a point where they fail to respond to this treatment. This is a very devastating time for sufferers and their families as the symptoms then become much worse. A cell-based therapy that restores production of dopamine and/or the ability to effectively use L-DOPA would greatly improve the lives of these patients. Because of our extensive preclinical experience and the clinical acumen of our Disease Team, we will be able to quickly adapt our procedures to human patients and be able to seek an IND from the FDA within four years.
Statement of Benefit to California: 
It is estimated that the cost per year for a Parkinson’s patient averages over $10,000 in direct costs and over $21,000 in total cost to society (in 2007 dollars). With nearly 40 million people in California and with one in 500 estimated to have Parkinson’s (1.5-2% of the population over 60 years of age), there are approximately 80,000 people in California with Parkinson’s disease. Thus, Parkinson’s disease is a significant burden to California, not to mention the devastating effect on those who have the disease and their families. A therapy that could halt the progression or reverse Parkinson’s disease would be of great benefit to the state and its residents. It would be particularly advantageous if the disease could be halted or reversed to an early stage, since the most severe symptoms and highest costs of care are associated with the late stages of the disease. Cell-based therapies offer the hope of achieving this goal.
Progress Report: 
  • A distinguished group of scientists was assembled by Dr. Stuart Lipton to plan a strategy to develop a human embryonic stem cell line expressing a constitutively active form of the transcription factor MEF2 (MEF2CA) into a therapeutic for treatment of Parkinson’s disease (PD), as funded by this planning grant. Preliminary data presented showed directed differentiation of the stem cells into mature dopaminergic cells and a positive outcome, histologically, electrophysiologically and behaviorally, when transplanted into a rat model. The salient features of the preliminary data show that the cells showed a strong propensity to differentiate into dopaminergic neurons, remaining endogenous dopaminergic neurons were saved from death or recruited to synthesize more dopamine through trophic interactions, and the behavioral readout showed that the rats’ neuromotor deficits were improved. An additional feature of the transplanted cells produced by the presented strategy was that none of the MEF2CA-expressing cells were hyperproliferative, indicating that tumor formation will not be a problem with their use. A strategy to further develop the cells under GMP conditions, test in rat and monkey models of PD and begin regulatory compliance for FDA approval was developed. Importantly, insertion of the Mef2CA gene in the stable stem cell line was verified by sequencing to occur at non-essential site of integration.

Understanding the role of LRRK2 in iPSC cell models of Parkinson's Disease

Funding Type: 
Basic Biology III
Grant Number: 
RB3-02221
ICOC Funds Committed: 
$1 482 822
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
iPS Cell
oldStatus: 
Active
Public Abstract: 
The goal of this research is to utilize novel research tools to investigate the molecular mechanisms that cause Parkinson’s disease (PD). The proposed work builds on previous funding from CIRM that directed the developed patient derived models of PD. The majority of PD patients suffer from sporadic disease with no clear etiology. However some PD patients harbor specific inherited mutations have been shown to cause PD. The most frequently observed form of genetic parkinsonism is caused by the LRRK2 G2019S mutation it the most common. This mutation accounts for approximately 1.5-2% of patients with apparently sporadic PD, increasing to 4-6% of patients with a family history of PD, and even higher in isolated populations. Importantly, LRRK2 induced PD is clinically and pathologically largely indistinguishable from sporadic PD. This proposal focuses on studying the most frequent cause of familial PD and induces disease that is clinically and pathologically identical to sporadic PD cases. It is likely that LRRK2 regulates a pathway(s) that is important in the more common sporadic form of PD as well. Therefore by employing relevant models of PD, we hope to drive the biological understanding of LRRK2 in a direction that facilitates the development of disease therapeutics in the future. We ascertained patients harboring mutations in LRRK2 [heterozygous (+/G2019S) and homozygous (G2019S/G2019S)] as well as sporadic cases and age matched controls. We have successfully derived iPSCs from each genotype and differentiated these to DA neurons. We will use these as a model system to investigate these LRRK2 based models of PD. We will adapt current biochemical assays of LRRK2, which are source material intensive, to the small culture volumes required for the differentiation of iPSCs to DA neurons. This is a crucial necessity for development for utilizing iPSC derived DA neurons as tractable models of LRRK2 based PD. We will then probe the roles of LRRK2 in neuronal cell differentiation and survival. We will also ask whether the mutant LRRK2 induces changes in autophagy, as this has been postulated as a mechanism of LRRK2 induced pathogenesis. By studying wild-type and disease mutant LRRK2, in DA models of PD we hope to provide crucial understanding of the role mutant LRRK2 has in disease.
Statement of Benefit to California: 
It is estimated that by the year 2030, 75,000-120,000 Californians will be affected by Parkinson’s disease. Currently, there is no cure, early detection mechanism, preventative treatment, or effective way to slow disease progression. The increasing disability caused by the progression of disease burdens the patients, their caregivers as well as society in terms of healthcare costs. The majority of PD patients suffer from sporadic disease with no clear etiology, and a in a handful of these patients specific inherited mutations have been shown to cause PD. The most frequently mutated gene is called Leucine Rich Repeat Kinase 2 (LRRK2). Our goal is to study the mutated gene product in patient based models of Parkinson’s disease. In previous CIRM funding, we have developed patient derived induced pluripotent stem cells (iPSCs) from patients harboring mutations in LRRK2. We have been successful in differentiating populations these iPSCs into the neurons that are depleted in PD. The next step is to utilize these cells as models of mutation induced PD ‘in a dish’. We will employ these pertinent disease models to answer basic biology questions that remain about the function of LRRK2. This project brings together scientists previously funded by CIRM with scientists well versed in the study of LRRK2. This multidisciplinary approach to studying the causes of PD is a natural benefit to the State of California and its citizens. By bringing a better understanding of the role of LRRK2 in the cells that are lost in the progression of PD, we will bring more concrete knowledge of PD as a whole, bringing more hope for the development of a therapeutic for disease.
Progress Report: 
  • The overarching goal of this work is to utilize models of Parkinson's disease (PD) that originate from cells of PD affected patients harboring mutations within the LRRK2 gene so that we may discern the role of mutated LRRK2 in disease. Mutations in LRRK2 are the most common cause of familial PD. The disease presentation of patients with LRRK2 mutation is typically clinically indistinguishable from sporadic PD cases, making the onset of disease due to LRRK2 dysfunction clinically relevant. We have employed stem cells derived from these patients to generate neuronal cells in which we can determine the roles of LRRK2 in the PD mutated and the unmutated state. We have focused on a cellular process called autophagy that regulates the cell response to nutrient deprivation and plays a role in the selective degradation of proteins within the cell.
  • In the first year of funding we have analyzed the expression of the protein LRRK2 in induced pluripotent stem cells, neuronal precursor cells and have begun to differentiate the neuronal precursors to dopaminergic cells of the type lost in PD (a difficult task in itself). We have applied a novel method for detection of LRRK2 in situ by marrying the protein detection of antibodies and the sensitivity of nucleic acid amplification. We will continue to develop this methodology for maximum sensitivity to LRRK2. We have established assays to assess the effects of the LRRK2 mutant on autophagy that are relevant to PD and neurological diseases in general. We have met or made great progress on most of our anticipated milestones and are eager to proceed to the next phase of the project.
  • The overarching goal of this work is to utilize stem cell based models of Parkinson's disease (PD) derived from cells of PD affected patients that harbor mutations in the LRRK2 gene so that we may elucidate the deleterious role of mutated LRRK2 in disease. Mutations in LRRK2 are the most common cause of familial PD. The disease presentation for these patients with LRRK2 mutation is typically clinically similar to those with sporadic disease, making the onset of disease due to LRRK2 dysfunction clinically relevant. We have utilized stem cells harboring a mutation in LRRK2 and also daughter cells of that line in which genomic editing techniques have been applied to correct the PD mutation or disrupt the LRRK2 gene. We have generated the same kind of cells in culture that are lost during PD and hope that next, we can determine how these mutations that eventually cause disease disrupt normal neuronal function. We have made great progress in the understanding the expression of LRRK2 in early differentiation of stem cells to neurons and his will inform our future studies on mutation caused dysfunctions.

Development and preclinical testing of new devices for cell transplantation to the brain.

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-01975
ICOC Funds Committed: 
$1 831 723
Disease Focus: 
Neurological Disorders
Parkinson's Disease
oldStatus: 
Active
Public Abstract: 
The surgical tools currently available to transplant cells to the human brain are crude and underdeveloped. In current clinical trials, a syringe and needle device has been used to inject living cells into the brain. Because cells do not spread through the brain tissue after implantation, multiple brain penetrations (more than ten separate needle insertions in some patients) have been required to distribute cells in the diseased brain region. Every separate brain penetration carries a significant risk of bleeding and brain injury. Furthermore, this approach does not result in effective distribution of cells. Thus, our lack of appropriate surgical tools and techniques for clinical cell transplantation represents a significant roadblock to the treatment of brain diseases with stem cell based therapies. A more ideal device would be one that can distribute cells to large brain areas through a single initial brain penetration. In rodents, cell transplantation has successfully treated a great number of different brain disorders such as Parkinson’s disease, epilepsy, traumatic brain injury, multiple sclerosis, and stroke. However, the human brain is about 500 times larger than the mouse brain. While the syringe and needle transplantation technique works well in mice and rats, using this approach may not succeed in the much larger human brain, and this may result in failure of clinical trials for technical reasons. We believe that the poor design of current surgical tools used for cell delivery is from inadequate interactions between basic stem cell scientists, medical device engineers, and neurosurgeons. Using a multidisciplinary approach, we will first use standard engineering principles to design, fabricate, refine, and validate an innovative cell delivery device that can transplant cells to a large region of the human brain through a single brain penetration. We will then test this new prototype in a large animal brain to ensure that the device is safe and effective. Furthermore, we will create a document containing engineering drawings, manufacturing instructions, surgical details, and preclinical data to ensure that this device is readily available for inclusion in future clinical trials. By improving the safety and efficacy of cell delivery to the brain, the development of a superior device for cell transplantation may be a crucial step on the road to stem cell therapies for a wide range of brain diseases. In addition, devices and surgical techniques developed here may also be advantageous for use in other diseased organs.
Statement of Benefit to California: 
The citizens of California have invested generously into stem cell research for the treatment of human diseases. While significant progress has been made in our ability to produce appropriate cell types in clinically relevant numbers for transplantation to the brain, these efforts to cure disease may fail because of our inability to effectively deliver the cells. Our proposed development of a superior device for cell transplantation may thus be a crucial step on the road to stem cell therapies for a wide range of brain disorders, such as Parkinson’s disease, stroke, brain tumors, epilepsy, multiple sclerosis, and traumatic brain injury. Furthermore, devices and surgical techniques developed in our work may also be advantageous for use in other diseased organs. Thus, with successful completion of our proposal, the broad community of stem cell researchers and physician-scientists will gain access to superior surgical tools with which to better leverage our investment into stem cell therapy.
Progress Report: 
  • The surgical tools currently available to transplant cells to the human brain are crude and underdeveloped. In current clinical trials, a syringe and needle device has been used to inject living cells into the brain. Because cells do not spread through the brain tissue after implantation, multiple brain penetrations (more than ten separate needle insertions in some patients) have been required to distribute cells in the diseased brain region. Every separate brain penetration carries a significant risk of bleeding and brain injury. Furthermore, this approach does not result in effective distribution of cells. Thus, our lack of appropriate surgical tools and techniques for clinical cell transplantation represents a significant roadblock to the treatment of brain diseases with stem cell based therapies. A more ideal device would be one that can distribute cells to large brain areas through a single initial brain penetration.
  • In this first year of progress, we have designed, prototyped, and tested a stereotactic neurosurgical device capable of delivering cells to a volumetrically large target region through a single cortical brain penetration. We compared the performance of our device to a currently used cell transplantation implement – a 20G cannula with dual side ports. Through a single initial penetration, our device could transplant materials to a region greater than 4 cubic centimeters. Modeling with neurosurgical planning software indicated that our device could distribute cells within the entire human putamen – a target used in Parkinson’s disease trials – via a single transcortical penetration. While reflux of material along the penetration tract was problematic with the 20G cannula, resulting in nearly 80% loss of cell delivery, our device was resistant to reflux. We also innovated an additional system that facilitates small and precise volumes of injection. Both dilute and highly concentrated neural precursor cell populations tolerated transit through the device with high viability and unaffected developmental potential. Our device design is compatible with currently employed frame-based, frameless, and intraoperative MRI stereotactic neurosurgical targeting systems.
  • The surgical tools currently available to transplant cells to the human brain are crude and underdeveloped. In current clinical trials, a syringe and needle device has been used to inject living cells into the brain. Because cells do not spread through the brain tissue after implantation, multiple brain penetrations (more than ten separate needle insertions in some patients) have been required to distribute cells in the diseased brain region. Every separate brain penetration carries a significant risk of bleeding and brain injury. Furthermore, this approach does not result in effective distribution of cells. Thus, our lack of appropriate surgical tools and techniques for clinical cell transplantation represents a significant roadblock to the treatment of brain diseases with stem cell based therapies. A more ideal device would be one that can distribute cells to large and anatomically complex brain areas through a single initial brain penetration.
  • In the first year of progress, we designed, prototyped, and tested a stereotactic neurosurgical device capable of delivering cells to a volumetrically large target region through a single cortical brain penetration. We compared the performance of our device to a currently used cell transplantation implement – a 20G cannula with dual side ports. Through a single initial penetration, our device could transplant materials to a region greater than 4 cubic centimeters. Modeling with neurosurgical planning software indicated that our device could distribute cells within the entire human putamen – a target used in Parkinson’s disease trials – via a single transcortical penetration. While reflux of material along the penetration tract was problematic with the 20G cannula, resulting in nearly 80% loss of cell delivery, our device was resistant to reflux. We also innovated an additional system that facilitates small and precise volumes of injection. Both dilute and highly concentrated neural precursor cell populations tolerated transit through the device with high viability and unaffected developmental potential. Our device design is compatible with currently employed frame-based, frameless, and intraoperative MRI stereotactic (iMRI) neurosurgical targeting systems.
  • In this second year of progress, we have produced and tested the iMRI compatible version of our cell delivery device. The device components are fabricated from materials that are FDA-approved for use in medical devices, and we have assembled the device under Good Manufacturing Practice (GMP) conditions. Our device functions seamlessly with an FDA-approved stereotactic iMRI neurosurgical platform and computer-aided targeting system, and we have demonstrated that this iMRI-compatible system can deliver to the volume and shape of the human putamen through a single initial brain penetration. Thus, by using modern materials and manufacturing techniques, we have produced a neurosurgical device and technique that enables clinicians to “tailor” cell delivery to individual patient anatomical characteristics and specific disease states. This modern and “easy to use” platform technology furthermore allows “real-time” monitoring of cell delivery and unprecedented complication avoidance, increasing patient safety.
  • In this third year of progress, we have made final design refinements to the Radially Branched Deployment (RBD) cell transplantation device, which is fully compatible with currently employed interventional MRI stereotactic (iMRI) neurosurgical targeting systems. These design changes increase the "usability" of the device and enhance patient safety. The iMRI-guided RBD technology advances our ability to properly “tailor” the distribution of cell delivery to larger brain target volumes that vary in size and shape due to individual patient anatomy and different disease states. Furthermore, iMRI-guided RBD may increase patient safety by enabling intraoperative MRI monitoring. Importantly, this platform technology is easy-to-use and has a low barrier to implementation, as it can be performed “inside” essentially any typical diagnostic 1.5T MRI scanner found in most hospitals. We believe that this ease of access to the technology will facilitate the conduct of multi-site clinical trials and the future adoption of successful cellular therapies for patient care worldwide. In summary, by improving intracerebral cell delivery to the human brain, iMRI-guided RBD may have a transformative impact on the safety and efficacy of cellular therapeutics for a wide range of neurological disorders, helping ensure that basic science results are not lost in clinical translation.
  • Working with a California-based medical device manufacturer, we have developed manufacturing and testing procedures that are now being compiled into a design history file, which is a document required for eventual commercial use of the device. We are also working with an FDA regulatory consultant to prepare a 510K application to seek marketing clearance from the FDA.

Pages

Subscribe to RSS - Parkinson's Disease

© 2013 California Institute for Regenerative Medicine