Developing a drug-screening system for Autism Spectrum Disorders using human neurons

Developing a drug-screening system for Autism Spectrum Disorders using human neurons

Funding Type: 
Early Translational II
Grant Number: 
TR2-01814
Award Value: 
$1,410,697
Disease Focus: 
Autism
Neurological Disorders
Pediatrics
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
Status: 
Active
Public Abstract: 
Autism and autism spectrum disorders (ASD) are complex neurodevelopmental diseases that affect 1 in 150 children in the United States. Such diseases are mainly characterized by deficits in verbal communication, impaired social interaction, and limited and repetitive interests and behavior. Because autism is a complex spectrum of disorders, a different combination of genetic mutations is likely to play a role in each individual. One of the major impediments to ASD research is the lack of relevant human disease models. ASD animal models are limited and cannot reproduce the important language and social behavior impairment of ASD patients. Moreover, mouse models do not represent the vast human genetic variation. Reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells, iPSCs) has been accomplished using human cells. Isogenic pluripotent cells are attractive from the prospective to understanding complex diseases, such as ASD. Our preliminary data provide evidence for an unexplored developmental window in ASD wherein potential therapies could be successfully employed. The model recapitulates early stages of ASD and represents a promising cellular tool for drug screening, diagnosis and personalized treatment. By testing whether drugs have differential effects in iPSC-derived neurons from different ASD backgrounds, we can begin to unravel how genetic variation in ASD dictates responses to different drugs or modulation of different pathways. If we succeed, we may find new molecular mechanisms in ASD and new compounds that may interfere and rescue these pathways. The impact of this approach is significant, since it will help better design and anticipate results for translational medicine. Moreover, the collection and molecular/cellular characterization of these iPSCs will be an extremely valuable tool to understand the fundamental mechanism behind ASD. The current proposal uses human somatic cells converted into iPSC-derived neurons. The proposed experiments bring our analyses to real human cell models for the first time. We anticipate gaining insights into the causal molecular mechanisms of ASD and to discover potential biomarkers and specific therapeutic targets for ASD.
Statement of Benefit to California: 
Autism spectrum disorders, including Rett syndrome, Angelman syndrome, Timothy syndrome, Fragile X syndrome, Tuberous sclerosis, Asperger syndrome or childhood disintegrative disorder, affect many Californian children. In the absence of a functionally effective cure or early diagnostic tool, the cost of caring for patients with such pediatric diseases is high, in addition to a major personal and family impact since childhood. The strikingly high prevalence of ASD, dramatically increasing over the past years, has led to the emotional view that ASD can be traced to a single source, such as vaccine, preservatives or other environmental factors. Such perspective has a negative impact on science and society in general. Our major goal is to develop a drug-screening platform to rescue deficiencies showed from neurons derived from induced pluripotent stem cells generated from patients with ASD. If successful, our model will bring novel insights on the dentification of potential diagnostics for early detection of ASD risk, or ability to predict severity of particular symptoms. In addition, the development of this type of pharmacological therapeutic approach in California will serve as an important proof of principle and stimulate the formation of businesses that seek to develop these types of therapies (providing banks of inducible pluripotent stem cells) in California with consequent economic benefit.
Progress Report: 

Year 1

During the first year of the project, we focused on creating a cell bank of reprogrammed fibroblasts derived from several autistic patients. These pluripotent stem cells were then induced to differentiate into neurons and gene expression analyses will be done at different time points along the process. We also used some of the syndromic and non-syndromic patients for neuronal phenotypic assays and found that a subset of idiopathic autism cases displayed a molecular overlap with Rett syndrome. Our plan is to use these data to test the ability of candidate drugs on reverting some of the neuronal defects observed in patient neurons.

Year 2

The goal of this CIRM translational award is to generate a hiPSC-based drug-screening platform to identify potential therapies or biomarkers for autism spectrum disorders. In this second year we have made significant progress toward this goal by working on validating several neuronal phenotypes derived from iPSCs from idiopathic and syndromic autistic patients. We also made significant progress in order to optimize a synaptic readout for the screening platform. This step was important to speed up drug discovery. Using Rett syndrome iPSC-derived neurons as a prototype, we showed that we could rescue defect in synaptogenesis using a collection of FDA-approved drugs. Finally, we have initiated our analyses on global gene expression, from several neurons and progenitor cells derived from controls and autistic patients. We expect to find pathways that are altered in subgroups of patients, defined by specific clinical phenotypes.

Year 3

The goal of this CIRM translational award is to generate a hiPSC-based drug-screening platform to identify potential therapies or biomarkers for ASDs. We have made significant progress toward this goal by working on validating several neuronal phenotypes derived from iPSC from Rett syndrome (RTT) and idiopathic autistic patients. We also made significant progress to optimize the readout for our screening platform. This was important to speed up drug discovery. Using RTT iPSC as a prototype, we showed that we could rescue defect in synaptogenesis using a collection of FDA-approved drugs. Finally, we initiate our analyses on gene expression, collected from several neurons and progenitor cells derived from controls and autistic patients. We expect to find pathways that are altered in subgroups of patients, defined by specific clinical phenotypes. Here, we describe the results of our drug screening, using FDA-approved drugs in a repurposing strategy. We also show for the first time that iPSC-derived human neurons are able to generate synchronized neuronal networks. RTT neurons behave differently from controls. Our focus now is on the completion of our gene expression analyses and to validate positive drugs using a battery of secondary cellular assays.

© 2013 California Institute for Regenerative Medicine