“turning stem cells into cures.”

Roman Reed
To support and advance stem cell research and regenerative medicine under the highest ethical and medical standards for the discovery and development of cures, therapies, diagnostics and research technologies to relieve human suffering from chronic disease and injury.

Diane Prewitt: A long-time supporter of blindness research through the Foundation fighting blindness. She has retinitis pigmentosa, a degenerative form of blindness.
The California Institute for Regenerative Medicine (CIRM) was established by Proposition 71, the California Stem Cell Research and Cures Initiative.

The statewide ballot measure, which provided $3 billion in funding for stem cell research at California universities and research institutions, was approved by 59% of California voters on November 2, 2004, and called for the establishment of a new state agency to make grants and provide loans for stem cell research, research facilities and other vital research opportunities. The Independent Citizens Oversight Committee (ICOC) is the 29-member Governing Board of the Institute; the Governing Board members represent expertise from California’s leading public and private universities, non-profit hospitals and research institutions, patient advocacy groups and biotechnology.

A Message from the Chair
President’s Letter
CIRM News: BUILDING OPPORTUNITIES
CIRM News: OUR SCIENCE PRODUCT
CIRM News: ACCELERATING RESEARCH
CIRM News: BUILDING THE TEAM
Major Facilities Leverage
Spotlights on Disease: BATTEN’S
Spotlights on Disease: DIABETES
Spotlights on Disease: HUNTINGTON’S
Spotlights on Disease: PARKINSON’S
Spotlights on Disease: DEAFNESS
Outreach
Financial Statement URL
Grants Approved Through 2008
Governing Board Subcommittees and CIRM Working Groups

“I’m a big believer in stem cell research. This revolutionary science has the potential not only to improve the human condition but it can also improve the California economy.”
Governor Arnold Schwarzenegger

Human embryonic stem cells differentiating into neurons.
To the people of California

A Message from the chair

ROBERT N. KLEIN

With $1.15 billion in stem cell research facilities and faculty recruitments committed, global collaborations set, human trials underway and President Obama in the Whitehouse, the stem cell world changed in 2008.

Yet, for the California Institute for Regenerative Medicine (CIRM), the real change began November 2, 2004. The dynamic evolution of 2008 arose out of the will of 7,100,000 Californians voting in another year of financial crisis, to pass Proposition 71: a Constitutional Amendment and an Initiative, passed as one integrated ballot measure, creating a stem cell funding agency with $3 billion in bond authority.

HOW FAR HAVE WE COME? In 2004 we needed to place these words in the California Constitution to assure the long-term freedom of scientific research to develop medical therapies:

“There is hereby established a right to conduct stem cell research involving adult stem cells, cord blood stem cells pluripotent stem cells and/or progenitor cells.”

In 2009, University of California, San Diego Assistant Professor Caterina Jamieson, because of this freedom and stable funding, commenced the first human trial of a therapy derived in part from Proposition 71-funded stem cell research: a therapy that may treat a myeloproliferative blood disease that can lead to leukemia and strokes. As 2009 commenced, less than a week after President Obama’s inauguration, the FDA approved stem cell therapy trials for acute paralysis—a therapy derived from embryonic stem cell research that originated in the laboratory of Hans Kierstead at the Reeve-Irvine Research Center at the University of California, Irvine.

With the new President and the beginning of the FDA trials, the stem cell revolution has now truly been launched. Yet, there is much more to do. In 2009, the new Congress and President will need to remove restrictions on federal funding for research with all human embryonic stem cell lines and for the creation of much-needed new embryonic stem cell lines. The International Society for Stem Cell Research (www.isscr.org) has posted a policy paper in the news archives reaffirming that embryonic stem cell research remains “the gold standard,” signed by a significant number of CIRM grantees. Yet, the Congressional battle to provide federal funding for the full range of stem cell research still lies before us.

FEDERAL FUNDING IS NOT SECURE In 1998, President Clinton tried to initiate embryonic stem cell research funding only to find in 1999 that the conservative resurgence of the House of Representatives forced him to abandon this commitment. Proposition 71 and its constitutional protections for the full scope of stem cell research and its long term funding through 2018 will remain a safe harbor in a sea of change. California must sustain this revolution through early human trials if the stem cell revolution is to thrive through this volatile period.

We celebrate 2008 and the progress, but remain vigilant, focused on the mission, and cautiously optimistic, as the speed of scientific and clinical advances in stem cell research provide extraordinary breakthroughs and discoveries.

As we start 2009, we can also celebrate a major increase in NIH research funding for 24 months. At month 23, what happens? Can the nation sustain this research funding surge? We hope it can, but, we know California’s funding level will be sustained for more than 108 months. The funding stability must be there to carry these critical new therapies through early human trials, for which NIH has drastically reduced its funding.

FOCUS ON EARLY PHASE TRIALS The current financial crisis aggravates the recent, historical lack of capital in the development space between clinical studies and phase 2 human trials. It deepens and widens the “Valley of Death” that new stem cell therapies must navigate. Traditionally, NIH funding has not focused on this area, but Proposition 71 funding focuses on it as a mission critical core program objective. Both the basic research and the clinical trial ends of the research pipeline represent critical contributions to advancing stem cell therapies. Hopefully, the NIH will expand funding in this area or develop collaborative funding with CIRM for therapy development.

CIRM, in 2009, has already shifted its focus to funding this development resource gap. Announced CIRM programs include substantial funding for biotech companies, alone or in collaboration with academic institutions. In 2009 alone, $60 million is scheduled for Translational Research grants, and $210 million is scheduled for Disease Team grants and loans. In 2009, the Board will address resource allocations, in its strategic plan review, for early human clinical trials. If efficacy can be proven, the public’s will cannot be reversed or deflected.

By 2010, recent economic study suggests the agency’s funding will have generated at least $100 million of new tax revenue for the State.

We must sustain the translational element of this scientific revolution until two things happen:

• The value to patients is effectively proven with successful human trials of stem cell-based therapies.
• A path to affordable access to these stem cell therapies has been built for Californians and the world.

This will be California’s contribution in collaboration with great scientists and clinicians from many states and countries, and now the NIH. Certainly California has not and will not succeed in isolation.

California’s research has advanced with the inspired contributions of its peer review panels – drawn primarily from Europe and North America, all from outside of California. A list of the extraordinary men and women who have contributed their time to driving the scientific excellence of these peer review sessions is included on page 37 of this report. The patients and citizens of California are grateful for the dedication of these scientists and the special efforts of Vice-Chairs Joan Samuelson and Jeff Sheehy.

CALIFORNIA’S RESEARCH ASSETS Entering 2009, CIRM will have approved funding more than $500 million in scientific grants, with another $380 million authorized in the grant and loan pipeline. Another $1.15 billion has been authorized for the construction of new stem cell research facilities and faculty hiring (including $880 million in donor and institutional matching funds). These facilities are scheduled for completion in 2010. With the Chairman’s Office, the Facilities Working Group that drove the Major Facilities construction process was chaired by David Lichterger, with board member David Serrano Sewell as the Vice-Chair.

Global collaborations with nations are in place, providing $5 million from Australia for Early Translational grants and over $50 million of international research funding from the United Kingdom, Canada, and Spain on the Disease Team Initiative RFA. These research funding contributions, covering the research conducted outside California, brings the total matching donor, international, and institutional funding commitments to over $1 billion, on the first $1 billion (by September 2009) in CIRM’s projected funding commitments. There is a moral imperative that we marshal every possible resource to match the vision of California’s voters. To date, the matching fund commitments have been remarkable.
EXTENDING THE FUNDING HORIZON
The Initiative that created CIRM begins by establishing in the California Constitution, “The California Institute for Regenerative Medicine...to make grants and loans.” Beyond the classic grant programs, a loan program was envisioned for later stage research. The $5 billion for research funding is not enough, unless substantial portions of the funding are recycled to push sufficient medical research through early trials to reach the broad scale momentum necessary to create an entire new field of medical therapies.

With the Chairman’s Office, the Loan Task Force, under the leadership of board member Diane Roth and Finance Subcommittee Chairman Michael Goldberg, guided the development of a loan program in 2008. The ultimate goal is to expand a $500 million CIRM loan program with the hoped for proposed federal guarantees to yield a $1 billion initial program. That amount would be scaled up by recycling an additional $1 billion in repayment proceeds over the first decade of the program. In short, with $500 million in federal long-term guarantees and recycled principal repayments, interest and stock warrant revenue from borrowers, over $1.5 billion in additional the first decade of the program. In short, with $500 million in federal long-term guarantees and recycled principal repayments, interest and stock warrant revenue from borrowers, over $1.5 billion in additional resources could be added to the Proposition 71 research portfolio.

This loan program will provide funds to companies developing new cures for Californians and the world while also creating an ongoing source of funding for these critical commercial ventures.

When making critical funding allocations for research on mitigating or curing forms of cancer, heart disease, diabetes, dementia, arthritis, blindness, and stroke, among many candidate therapies, it is essential to our goals to expand our portfolio size through innovations – like the loan program. As we diversify the portfolio, our opportunities for success in the development of vital knowledge on the development path of chronic disease and the chance to prove successful therapies could be enhanced dramatically.

CALIFORNIA’S POLITICAL LEADERS ARE KEY
The stem cell agency’s remarkable progress has, each year, been lifted and advanced by the special dedication of our constitutional and legislative leadership to the mission of developing stem cell therapies to reduce human suffering.

The stem cell agency’s remarkable progress has, each year, been lifted and advanced by the special dedication of our constitutional and legislative leadership to the mission of developing stem cell therapies to reduce human suffering.

There is a moral imperative that we must marshal every possible resource to match the vision of California’s voters.

From this revolutionary field of medical science. That day will come in large part due to the commitment California has made – through its government sector ($3 billion) and its civic sector ($1 billion to date) – to drive this frontier forward for the benefit of mankind with treatments on the horizon for diabetes, heart disease, blindness, neurodegenerative diseases, forms of deafness and other chronic diseases.

By 2010, a recent economic study suggests the agency’s funding will have generated at least $100 million of new tax revenue for the State, by the time the state’s general fund will pay the first $15 million in debt service on the stem cell bonds. In addition, an estimated 13,727 job years will have been created by the major facilities funding alone. By 2010, just the new research facilities funded by CIRM and donors will also house over 2,200 scientists, clinicians and their research personnel.

The long-term economic multiplier effects of this vast expansion in California’s biomedical research sector will launch a major wave of expansion in California’s second largest technology job sector – biotech.

THE ULTIMATE REWARD
Beyond economic benefits, including potential relief from chronic health care costs for California families, government and businesses, the ultimate benefits we reach towards everyday are for each child, husband, wife or parent who is a patient. Last summer, I attended a Foundation Fighting Blindness event. A father, suffering from retinitis pigmentosa, a form of blindness, showed me his bionic eye that permitted him to see only bright lights and shapes. He said he was saving his other eye for stem cell therapies. His daughter stood by his side, only in her 40s, her eyesight deteriorating. She knew the future – blindness, or just possibly, stem cell therapies to repair and restore her sight and her father’s.

Will the pending collaboration of California scientists with the United Kingdom’s scientists on retinal disease accelerate human therapies? Large animal trials are already showing success in England. California scientists work in global collaborations; the world awaits the outcome. A father and a daughter await the outcome. Hope for California, hope for the world’s families is betting on the vision of 7,000,000 California voters.

I am looking for the day I can look this father and daughter in their eyes and they can see me.

Thank you California.
My first year leading California’s state stem cell agency has been an exhilarating experience.

The pace of discovery in the fields of regenerative medicine and stem cell science is accelerating faster than we had imagined possible. Some of this acceleration comes from truly unexpected developments in the research. The most notable example: the reprogramming of adult cells to resemble embryonic stem cells, so-called induced pluripotent stem cells (iPS). Researchers in the field had long talked about nuclear reprogramming being theoretically possible, but few placed it on any list of likely successes. Another fulfilling aspect of this year has been watching CIRM grantees adapt to the twists and turns of the field and quickly making significant advances to expand and define the new research territory. In June when we awarded 16 grants for deriving new stem cell lines, the most common successful projects were to compare embryonic and iPS cells. Those comparisons will be critical for iPS cells to be considered for clinical use and for calibrating their role as a research tool. The latter use may have the most ultimate promise and is already proving to be invaluable for interrogating the cause and variants of complex human diseases.

It’s already proving to be invaluable for interrogating the cause and variants of complex human diseases.

As it became clearer in the literature that there are mutant cells with stem cell-like properties at play in the early development and later spread of most cancers, CIRM grantees began leaders in defining the similarities and differences between those “cancer stem cells” and normal stem cells. This work is bound to discover new opportunities for innovative and traditional cancer therapies.

In May, Wei Guo at UCLA published the discovery of a series of mutations that can convert normal blood stem cells into cancer stem cells. Then in October, Emmanuelle PASSEGUIE and colleagues at Stanford announced that a well-known family of cancer-fighting proteins also helps blood-forming stem cells divide normally. These two push-and-pull findings hold great promise for uncovering novel ways of treating cancer and preventing its spread. These papers represent a small sample of the CIRM grantee portfolio seeking to use stem cells to better understand and treat cancer.

This brings me to one of the great days of my first year. That was in late March when we heard that Catriona Jamieson from UCSD, along with collaborators around the country, had used two different stem cell assays to verify that a particular cellular pathway triggers a myeloproliferative disorder that can lead to acute leukemia. Working with a local biotech company, she showed that an inhibitor of that pathway can stop the disorder. That drug is now in clinical trials in humans—the first clinical trial arising in part from CIRM funding.

GETTING TO THE RIGHT DIRECTORS Directing pluripotent stem cells, whether embryonic or iPS, to become a specific type of progenitor or mature cell will be a make-or-break hurdle for the entire field. No one believes it would be safe or effective to transplant still-pluripotent cells into patients. CIRM grantees have published many significant papers showing ways to get cells to mature into the desired cell type.

Robert Blöbich and colleagues at UCSF found that certain DNA relatives called microRNA have a role in turning genes on and off and regulating whether embryonic stem cells remain as stem cells or mature into adult cell types.

Kathy Ivey and colleagues at the Gladstone Institutes showed that the tiny RNA regulators of DNA can not only drive embryonic stem cells to become heart muscle, but they can also actively inhibit the cells from becoming other tissues.

When many teams have matured embryonic stem cells into neurons, Fred Gage’s team at the Salk Institute grew embryonic stem cells into motor neurons as well as into their support cells known as astrocytes. Critically, when they inserted a DNA mutation linked to ALS, they saw the ensuing neural damage characteristic of the disease.

As important as this work is getting pluripotent stem cells to mature as desired, it is equally important to find ways to keep embryonic stem cells in the stem cell state for long periods and in large volumes—two things that make scale-up of any therapeutic production of cells feasible. Dennis Clegg at UCSB discovered a growth factor that helps human embryonic stem cells thrive in the lab, shortcutting their tendency to mature into other cell types.

Making all this happen. Our grantees stay on top of this fast moving field in no small measure because of the work of the CIRM Science Office, ably led by our Chief Science Officer Marie Coté and Director of Scientific Activities, Patrizia Olson. These dedicated in-house scientists use constant review of the literature, in-house seminars, off-site conferences, specialized workshops they organize and countless direct contacts with researchers in the field to stay abreast of all the latest trends. This knowledge informs the priorities listed in each Request for Grant Applications, and this keeps the CIRM portfolio output at the forefront of this most exciting field of research.

A small and tight-knit hard working administrative team supports the science staff and the rest of CIRM’s operations under the leadership of Vice President John Robson. The grants administration group and the finance and contracting staff make sure CIRM is a good steward of the funds authorized by the voters of California.

The communication and education team led by Don Gibbons are providing the important link between science and the lay community, patient support groups, public officials and interest groups that helps the public at all levels understand what CIRM and the field as a whole is accomplishing and of all the hard work we still have left to do. Others keep the entire team equipped and as fully staffed as possible to get the job done, while the staff of the Chairs office make heroic efforts to ensure our financial potential and keep our Governing Board informed and operating efficiently and transparently.

Within my own office, innovations and strategy are linked with logic and diplomacy through our outstanding legal team and my assistant Pat Becker. We are intent on achieving lean and efficient processes that leverage our funding for the maximum benefit of Californians. The world has joined us in this challenging endeavor with agreements made between CIRM and a number of countries to collaborate with Californian scientists.

I want to end with something I tell my colleagues here at CIRM: we are in a hurry; we have a short time frame and we need to get genuine cures to Californians.”

“We are in a hurry; we have a short time frame and we need to get genuine cures to Californians.”

To the people of California

President’s Letter
ALAN TROUNSON, PHD
With voter approval of Proposition 71, California was poised to become an international hub for stem cell research. To accommodate what would prove to be a steady influx of scientific talent drawn to California’s supportive research environment, CIRM’s Strategic Plan called for significant investment in new research facilities. That vision was advanced in May, when the Governing Board approved CIRM Major Facilities grants totaling $271 million for 12 institutions to build stem cell research facilities throughout the state.

With voter approval of Proposition 71, California was poised to become an international hub for stem cell research.

The grants will establish three types of CIRM facilities: • CIRM Institutes to carry out stem cell research in three categories: basic and discovery research, preclinical (translational) research, and preclinical and clinical development and clinical research. • CIRM Centers of Excellence to conduct stem cell research in two of the three categories. • CIRM Special Program to conduct specialized stem cell projects in one of the three categories above.

This unprecedented funding was intended to expand research capacity and capabilities in California by funding new facilities and facility improvements for stem cell research centers. Most universities need more lab space and much of the existing space is not well suited for cell culture work. Another objective was to build facilities in California free of federal funding to allow research and development of therapies based on human embryonic stem cell (hESC) and other stem cell approaches without the current federal government restrictions. With President Barack Obama in office, the stem cell research community expects a reversal of the Bush administration’s policies on federal funding of hESC research. CIRM welcomes this development and while a much more favorable research environment is anticipated, there is still an urgent need for new – and better – lab space for this expanding field of medical science. What’s more, the long-term stability of stem cell research policy cannot be assumed.

Seven of the 12 projects are CIRM Institutes (boxes on the following pages), designed to accommodate basic, translational and clinical researchers working side-by-side to facilitate collaboration and accelerate the pace of research. If and when federal dollars can be used to pay overhead expenses, this novel design will provide more efficient use of California’s investment.

Construction has begun on many of these facilities, which are scheduled for completion in 2010.

CIRM CENTERS OF EXCELLENCE (GRANTS OF UP TO $25 MILLION)

Buck Institute

Buck Institute for Age Research

CIRM AWARD: $20,500,000

TOTAL PROJECT INVESTMENT: $91,680,747*

The facility will be the second of four research buildings in the Buck Institute’s master plan and provides space for investigators studying stem cells and their impact on the aging process as well as identifying ways that stem cells can be used to diagnose and treat conditions such as Alzheimer’s, Parkinson’s and Huntington’s disease, as well as stroke and cancer.

University of California, Berkeley

CIRM AWARD: $21,043,500

TOTAL PROJECT INVESTMENT: $92,610,000*

Twelve new laboratories devoted to stem cell research in the Li Ka Shing Center for Biomedical and Health Sciences building are being constructed to foster collaboration among campus investigators by centralizing research conducted by investigators currently housed in different areas across campus.

CIRM SPECIAL PROGRAMS (GRANTS OF UP TO $10 MILLION)

University of California, Santa Cruz

CIRM AWARD: $17,919,950

TOTAL PROJECT INVESTMENT: $26,296,950*

The award will fund a new center to house six stem cell researchers and support a much larger number of scientists with access to research tools such as mass spectrometry and tissue culture. The additional lab space will enable the University to recruit new faculty members and accelerate efforts in stem cell engineering.

University of California, Merced

CIRM AWARD: $4,359,480

TOTAL PROJECT INVESTMENT: $6,255,000*

UC Merced Stem Cell Instrumentation Facility will conduct research focused on understanding how stem cells make decisions. The Foundry will offer California scientists an interdisciplinary, collaborative environment and access to advanced instrumentation and techniques for single-cell analysis – including opportunities to co-develop customized instruments, such as labs-on-a-chip, using online tools so that they can rapidly adopt cutting-edge research technologies.

University of California, Santa Barbara

CIRM AWARD: $3,205,600

TOTAL PROJECT INVESTMENT: $14,102,400*

UCSB plans to renovate 10,337 square feet of a seven-story Biological Sciences building to house the Center for Stem Cell Biology and Engineering. In addition to providing space for collaborative work, the facility will feature space for new distinguished faculty members and renovated core facilities housing high-throughput sequencing capabilities.

Stanford University

Stanford University’s Stem Cell Biology and Regenerative Medicine Institute received a $43.6 million grant from CIRM to support the construction of the Lorry I. Lokey Stem Cell Research Building—an 800,000-square-foot, state-of-the-art facility.

At least $130 million of the total building cost will come from philanthropic contributions. These include a $75 million gift from Larry Lokey, founder of Business Wire, and $10 million from Mill Valley, California investor bank John Scully and his wife, Regina. In addition, university board of trustees member Thomas Steyer and his wife, Kat Taylor, have made an unspecified gift to the project. The balance of the funds will come from university resources.

“At 81–1 expect to go well past 90—I might see the benefits of stem cell research. There’s a chance,” said Lokey. “But the real application will be for the 38-year-old person who survives a heart attack and has heart damage. Stem cells may be able to repair the damage. To me, that’s worth the money I put in.”

Irving Weissman, MD, the Institute’s director, said the new building promises to allow Stanford researchers to move the field of stem cell biology forward in significant ways. “We want to be able to figure out the biochemistry of individual stem cells,” Weissman said. The ultimate goal, he said, is to tell one stem cell apart from another. “We could look at the difference between a neuron that’s involved in depression and one involved in schizophrenia.”
than 70 research papers based on CIRM funding published in high impact journals. Taken together they add up to a year in which California stem cell researchers took hundreds of small but significant steps toward the ultimate goal of new therapies for disease.

Back to Basics

Embyronic stem cells are such a new tool – the human version only became available in 1998 – that researchers are still trying to understand what the cells are and how best to work with them in the lab.

Bruce Beutler, MD, the Nobel prize-winning neural scientist, said Lawrence Goldstein, PhD, director of the University of California, San Diego Stem Cell Program, has raised by members of the consortium, which includes UCSD, The Scripps Research Institute, the Salk Institute for Biological Studies who have helped to develop the stem cell research.

The Mayo Clinic and a San Diego pharmaceutical company, TargetGen, to develop a novel treatment for myeloproliferative disorder, a disease that can progress to leukemia. A drug to treat this devastating human disease.

“Scientists trying to produce insulin-producing beta cells that could be used to treat diabetes will be based near those trying to develop the brain’s nerve cells,” said Arnold Kriegstein, MD, PhD, director of the center.

He added that nearly identical molecular signaling is necessary for the differentiation of both types of cells.

The building’s location near the medical center will support the long-term goal of translating basic research findings to clinical trials.

“Being near existing clinical services will be a great benefit,” Kriegstein said.

In addition to $34.9 million from CIRM, UCfP has received a $16 million grant from the California Institute for Regenerative Medicine and Stem Cell Research. The building’s location near the medical center will support the long-term goal of translating basic research findings to clinical trials. "Being near existing clinical services will be a great benefit," Kriegstein said.

In addition to $34.9 million from CIRM, UCfP has received a $16 million grant from the California Institute for Regenerative Medicine and Stem Cell Research. The building’s location near the medical center will support the long-term goal of translating basic research findings to clinical trials. "Being near existing clinical services will be a great benefit," Kriegstein said.

In addition to $34.9 million from CIRM, UCfP has received a $16 million grant from the California Institute for Regenerative Medicine and Stem Cell Research. The building’s location near the medical center will support the long-term goal of translating basic research findings to clinical trials. "Being near existing clinical services will be a great benefit," Kriegstein said.

In addition to $34.9 million from CIRM, UCfP has received a $16 million grant from the California Institute for Regenerative Medicine and Stem Cell Research. The building’s location near the medical center will support the long-term goal of translating basic research findings to clinical trials. "Being near existing clinical services will be a great benefit," Kriegstein said.
This year CIRM awarded more than $104 million in scientific grants to speed progress toward treatments for debilitating disease. These grants went to 24 California institutions, including six for-profit organizations. In keeping with CIRM’s mission to bring therapies to people with untreatable disease, the funding went to create much-needed new cell lines, support the young researchers whose research will eventually lead to new treatments, and begin the process of translating basic research into clinical trials.

CREATING NEW CELL LINES

The New Cell Lines awards provided more than $25 million to 17 researchers trying to develop new lines of stem cells, either embryonic in origin or reprogrammed adult cells.

CIRM President Alan Trounson said the new lines developed through these grants are critical for moving stem cell-based therapies to the clinic. “Derivation of new human embryonic stem cell lines is a priority for both basic and translational research that could be the foundation for advancing new therapies,” he said.

The cell lines created by these grants, which went to ten institutions, will provide the stem cell research community with a more robust pool of cell lines for their research. Some of the older lines have genetic defects, may have picked up contaminants from animal products and come from a narrow genetic background.

Among the new grants funded are attempts to create cell lines carrying disease mutations, which can be used to study genetic disorders such as Parkinson’s disease, forms of dementia and heart disease, among others. Other grants funded attempts to create cell lines with no exposure to animal products, to more effectively reprogram adult cells and to compare embryonic cells and reprogrammed cells.

These newly developed stem cell lines will be available to all researchers working toward cures for disease.

SUPPORTING YOUNG FACULTY

The New Faculty II grants extended a previous round of funding intended to encourage promising young faculty members to build careers in stem cell research. This year’s 23 awards went to 12 scientists and 11 physician scientists whose work can include any type of stem cell, adult or embryonic, animal or human.

Investigators funded by these grants receive salary and research support for five years, creating a stable environment for building innovative research programs at a point in their careers when funding can be difficult to obtain.

University of California, Irvine

The University of California, Irvine’s Sue and Bill Gross Stem Cell Research Center is currently under construction in the heart of the school’s Health Sciences complex. The facility will house both research laboratories and clinical space equipped with resources to treat patients.

“Housing researchers and clinicians under one roof will significantly hasten the development of treatments,” said Hans Keirstead, PhD, co-director of the Center.

Keirstead predicted that stem cell-based treatments used to restore mobility to people with spinal cord injury will be among the advances made available through the new UCI facility. “We will be able to develop the treatment and then work with our clinician colleagues as they bring new hope to their injured patients,” he said.

In addition to $22.2 million from CIRM, funding included a $10 million gift from Sue J. Gross and William H. Gross. Donors Tom Yuen and Edward Thorp each gave $1 million to the building project.

The University of Southern California

The University of Southern California is constructing a five-story building on its campus to house the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC. CIRM awarded $26.9 million to the Keck School of Medicine to construct the building.

Martin Perera, PhD, the center’s director, said the new facility will house basic researchers and clinicians working together for the first time. “The facility will be a scientific crossroads on the frontiers of stem cell biology. Together, we will be able to take fundamental discoveries in basic science and develop those into new clinical applications for the treatment of diseases,” Perera said.

Perera and his fellow researchers will focus on a few key areas for therapeutic application of regenerative medicine. One is macular degeneration, where clinicians and scientists are already laying the groundwork for new treatments for this common cause of blindness.

USC will match the CIRM facilities grant and has received donations from the Eli and Edythe Broad Foundation, Robert Day, the W.M. Keck Foundation and the Annenberg Foundation.

BUILDING THE TOOLS

With the Tools and Technologies awards, CIRM brought six for-profit organizations into the ranks of CIRM-funded initiatives. The $19 million round of funding also included 17 grants from non-profit institutions.

These grants are intended to generate new tools and technologies to overcome barriers in stem cell research. Some grants develop new reagents or tools for working with stem cells while others scale up existing technologies for use in the type of large-scale, high-throughput research that will be necessary to bring stem cell-based therapies to the clinic.

Robert Klein, chairman of the Governing Board, said supporting a mix of for-profit and non-profit organizations capitalizes on California’s leadership in both academic science and biotechnology.

“By funding both in the academic and biotech sectors CIRM is building a strong network of individuals and organizations that are devoted to overcoming barriers in developing new treatments for debilitating diseases,” he said.

Having effective tools and technologies for working with stem cells will prevent roadblocks in bringing therapies from the lab to people with debilitating disease.

TRANSLATING EARLY SUCCESSES

The first round of funding intended to explicitly move basic research to clinical trials brought in 81 eligible applications, with 54 from non-profit institutions and 27 from for-profit institutions.

At its April meeting the Governing Board is expected to award up to $60 million to support an estimated ten three-year projects.

The Early Translational Research awards are intended to ensure that promising stem cell research makes it to patients. The early stages of moving basic research to clinical trials is an area that is notably lacking in funding sources, leaving some promising research with no avenue to reach patients.

The awards will support two areas of research. The first is work that results in a new drug, molecule or stem cell-based therapy that addresses an unmet medical need, such as treating a disease with no effective therapies.

The other awards will support work to overcome significant bottlenecks in moving stem cell treatments to the clinic. These bottlenecks could include creating disease models, preventing immune rejection of stem cell transplants, tracking implanted stem cells and monitoring and preventing cancers formed by transplanted cells.

A future round of funding will address later stages of translational research, including the preclinical safety studies and human clinical trials.
In the past year CIRM activities expanded the team of stem cell experts in California. At a meeting in January 2009, the Board augmented the first round of training grants issued in April 2006 with a second round of grants. At that same meeting they voted on two more team building initiatives, one designed to train lab personnel, and the other to implement a loan program designed to make it easier to bring industry into the stem cell team. Earlier in 2008, the board awarded 22 Disease Team Planning grants, which fostered the assembly of multi-disciplinary research teams. The University of California, Davis is renovating an existing building to create a $62 million Institute for Regenerative Cures in Sacramento. The new facility will include a large state-of-the-art Good Manufacturing Practice facility for making cells pure enough to use in clinical trials. “We’ve designed a collaborative hub, a facility that brings together scientists and physicians from a variety of disciplines and specialties across our campus and beyond,” said Jan Nohta, PhD, Director of the UCD Stem Cell Program. Nolta adds that the new space will allow UCD researchers to simultaneously pursue stem cell research and clinical trials. Nohta and her colleagues are working on research, she said, that could one day save the limbs of diabetic patients, restore vision and someday replace organs by engineering them from human embryonic stem cells. A $20 million grant from CIRM will create 90,000 square feet of research space. Matching funds will come from the university, as well as from individuals and foundation grants. The investment of $20 million from CIRM and $79 million from donors and UCD will create a collaborative Stem Cell Research Hub. Training the next generation CIRM Research Training Program II extended the agency’s first-ever round of grants and tentatively will allow 1 new and 14 existing training programs to offer their “CIRM Scholar” training program of robust exposure to stem cell science founded in knowledge of human disease as well as a critical understanding of fundamental biology. The $40 million in awards seeks to train a variety of researchers from scientifically diverse backgrounds ranging from developmental biology and neuroscience to bioengineering and chemical biology. The grants require integration and interaction across the pipeline of progress to therapy from basic science and engineering to clinical medicine. “These grants are in investment in human capital,” said CIRM president Alan Trounson. “We are building the intellectual foundation to establish a strong and vibrant community and prepare the next generation of Californian scientists for discovery in this vital and accelerating field.” The programs offer training at three levels: pre-doctoral, post-doctoral and clinical fellowships. The training period ranges from 12 to 36 months. Adding breadth to the team The Bridges to Stem Cell Research Awards aim to fill a loming gap in the stem cell team. The rapid progress in stem cell research in California will lead to growth in the regenerative medicine and stem cell industries, which will require a pool of workers with specialized training and skills. The Board tentatively awarded $17.5 million to 11 institutions on January 30 to fund research internships and associated training activities. The investment of $20 million from CIRM and $63 million from donors and UCLA will lead to new therapies for many diseases including cancer. The Bridges to Stem Cell Research Award is an innovative model for research and clinical trials. Nolta and her colleagues are working on research, she said, that could one day save the limbs of diabetic patients, restore vision and someday replace organs by engineering them from human embryonic stem cells. A $20 million grant from CIRM will create 90,000 square feet of research space. Matching funds will come from the university, as well as from individuals and foundation grants. The investment of $20 million from CIRM and $79 million from donors and UCD will create a collaborative stem cell research Hub.
CIRM Major Facilities

The Eli and Edythe Broad Foundation contributed a total of $75 million to the facilities at the University of California, San Francisco, the University of California, Los Angeles, and the University of Southern California. “By creating new research centers and attracting the very best scientists from around the world, we will enable the rapid progress of one of the most promising areas of scientific and medical research today. The partnership between public institutions, the state, private foundations and donors demonstrates the unprecedented commitment California is making to stem cell research.”

Lorry Lokey contributed $75 million to the facility at Stanford University. “The important thing to me is that stem cells might not only extend life, but also improve the quality of life, as so many people suffer in their later years. But I think stem cells will have applications across the entire life span.”

Ray Dolby donated $16 million to the facility at the University of California San Francisco. “Dagmar and I are very happy to see the ongoing progress of CIRM activities and wish the project continued success.”

Edward Thorp contributed to the facility at the University of California, Irvine. “Vivian and I believe that private donations like ours in support of stem cell research at UCI will have a benefit both to our community and to our country that is immeasurably greater than the amount of the gift. We expect donor support will allow continuing breakthroughs by UCI’s stellar research team and that this will be leveraged by attracting many times as much in continuing state support.”

The Li Ka Shing Foundation donated $40 million to the facility at the University of California, Berkeley. “When I made a gift to support the establishment of the Li Ka Shing Center for Biomedical and Health Sciences at Berkeley, I was inspired by the passage of Prop 71 and the promise of significant advances in stem-cell research. I am pleased to partner with UC Berkeley and with CIRM to support focused efforts targeting the root causes of today’s most devastating diseases and translate discoveries into new therapies.”

Denny Sanford contributed $30 million to the Sanford Consortium for Regenerative Medicine in San Diego. “I am excited to support this unique collaboration of four world class institutions. I believe that by working together these researchers will quickly bring forward novel scientific developments that ultimately help patients with limited or no treatment options today.”

CIRM Major Facilities Awards leveraged $884 million in donor and institutional funds

<table>
<thead>
<tr>
<th>Institution</th>
<th>CIRM Award</th>
<th>Donor and Institutional Funds</th>
<th>Project Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanford University</td>
<td>65,575,000</td>
<td>181,372,000</td>
<td>246,945,000</td>
</tr>
<tr>
<td>Stanford Consortium</td>
<td>69,000,000</td>
<td>112,202,026</td>
<td>181,202,026</td>
</tr>
<tr>
<td>University of California, San Francisco</td>
<td>54,902,400</td>
<td>100,552,346</td>
<td>155,454,746</td>
</tr>
<tr>
<td>University of California, Irvine</td>
<td>27,150,000</td>
<td>54,001,640</td>
<td>81,151,640</td>
</tr>
<tr>
<td>University of Southern California</td>
<td>26,972,500</td>
<td>115,657,300</td>
<td>142,629,800</td>
</tr>
<tr>
<td>University of California, Davis</td>
<td>20,102,400</td>
<td>58,784,188</td>
<td>78,886,588</td>
</tr>
<tr>
<td>University of California, Los Angeles</td>
<td>19,914,000</td>
<td>62,975,578</td>
<td>82,889,578</td>
</tr>
<tr>
<td>Buck Institute for Age Research</td>
<td>20,900,000</td>
<td>71,186,747</td>
<td>91,086,747</td>
</tr>
<tr>
<td>University of California, Berkeley</td>
<td>20,135,500</td>
<td>72,426,500</td>
<td>92,562,000</td>
</tr>
<tr>
<td>University of California, Santa Cruz</td>
<td>7,191,350</td>
<td>19,104,510</td>
<td>26,295,860</td>
</tr>
<tr>
<td>University of California, Merced</td>
<td>4,159,400</td>
<td>19,053,300</td>
<td>23,212,700</td>
</tr>
<tr>
<td>University of California, Santa Barbara</td>
<td>3,282,500</td>
<td>18,195,400</td>
<td>21,477,900</td>
</tr>
<tr>
<td>University of California, San Diego</td>
<td>21,045,950</td>
<td>184,539,049</td>
<td>205,584,999</td>
</tr>
</tbody>
</table>

CIRM Major Facilities

STATE FUNDS LEVERAGE PRIVATE DONATIONS

The Analysis Group did an assessment of the economic impact for the State of California of the combined CIRM/donor/institutional commitment of $1.1 billion to build the 12 CIRM major stem cell facilities and to outfit them for faculty. Those projections for the years 2007 through 2011 suggest the investment could generate nearly $100 million in new state revenue and create over 13,000 job-years of employment.
Two neurospheres, compact masses of neuron precursor cells, derived from human embryonic stem cells.

“It’s really an impressive thing to be part of an organization that takes so seriously its mission to get soon-to-be discovered treatments and remedies and ultimately cures into the lives of patients and their families. That’s what CIRM is all about.”

LEEZA GIBBONS, FOUNDER, THE LEEZA GIBBONS MEMORY FOUNDATION

At each board meeting, a Spotlight on Disease presentation features patients, clinicians and researchers speaking about the hope of stem cell research. These are their stories...

Two neurospheres, compact masses of neuron precursor cells, derived from human embryonic stem cells.
What is it like to live with Batten disease?

Tony and Katie Ferrandino were out of hope when they left the hospital with their 4-year-old son, Drew, that January day in 2007. “Our plans for hospice and 24-hour nursing were in place. We were basically going home to watch our son die,” Tony Ferrandino said. Then Drew giggled. Loud.

It was like a call to arms. The couple knew they could not give up the battle they had waged since their son’s third birthday, when a seizure alerted them that something was going very wrong with their little boy. Gradually, Drew lost his ability to walk, talk, and even eat. Their son had Batten disease, an always-fatal failure of the cells’ ability to dispose of its waste products.

StemCells Inc. of Palo Alto was conducting a very small trial — six patients — designed to determine the safety of injecting neuronal stem cells into the brains of children with Batten disease. Drew had little chance of being one of the six, the parents were told. But on July 31, 2007, he became the fourth child to undergo a stem cell transplant at Doernbecher Children’s Hospital in Portland, Ore.

“We consider ourselves lucky to be part of the hope of stem cells,” Ferrandino said.

What if no one ever took out the garbage?

That’s essentially what happens in the cells of children with neuronal ceroid lipofuscinosis, sometimes called Batten disease. Every cell in our bodies contains tiny waste disposers called lysosomes. Within their acidic environment, a gang of various enzymes chop up the waste produced in the cell’s normal operation. But in Batten disease, a genetic defect interrupts the formation of a single enzyme. In time, the cells of these children swell with accumulating waste products and die. The brain shrinks. The children who once developed normally lose ground, forgetting how to walk and how to talk, losing their vision and finally, their lives.

StemCells Inc. of Palo Alto hopes to correct this genetic error by injecting neuronal stem cells into the brains of children born with this defect. Between 2006 and January of 2008, six children were injected with neuronal stem cells in a Phase 1 study designed primarily to evaluate the safety of the procedure. A surgeon drilled four dime-size holes called trephinations on each side of a patient’s head and injected stem cells just beneath the brain’s thin ribbon of cortex, said Stephen Huhn, MD, vice president of StemCells Inc., who directs its central nervous system program.

The children will be monitored for five years. Huhn, a pediatric neurosurgeon, took a leave from Stanford University to help direct the clinical trial conducted at the Oregon Health Sciences University.

“The opportunity to develop, even in a small way, a field that might offer potential for restoration and repair of the damaged brain is very exciting,” he said.

In addition to monitoring transplant safety, researchers are looking for signs of some positive effects. In animal models, transplanted human neural stem cells successfully migrated to the correct portions of the brain, integrated with surrounding neurons and began producing the missing enzyme, said Ann Tsukamoto, PhD, StemCells’ executive vice president of research and development.

“Whether we’ll be able to show measures of efficacy in a safety study when these patients are very severe, that remains to be seen,” Tsukamoto said.

Although the number of children with Batten disease is relatively small, there are more than 40 known forms of lysosomal storage disorders, about half of which affect the brain. Any of those may prove future targets for stem-cell therapies, Tsukamoto said.
In type 1 diabetes, the body’s immune system makes a devastating mistake. It decides that insulin-producing cells in the pancreas are the enemy and kills them. That’s why people with what was once called juvenile diabetes need to inject insulin two, four, five times a day.

Without insulin, the liver doesn’t know when to stop releasing glucose nor can the body get rid of it. Glucose floods the bloodstream, damaging tissues and leading to blindness, kidney failure, heart disease and death.

Emmanuel Bartge, PhD, vice president and chief scientific officer for NovoCell Inc., says the San Diego-based company is on target to undo the work of this friendly fire by not only replacing missing insulin-pumping islets of Langerhans cells, but by protecting the new cells from further attack. This year, NovoCell became the first commercial enterprise to receive funding from CIRM.

The work could be transformational, said Peter Butler, MD, director of the Larry Hillblom Islet Research Center at the University of California, Los Angeles.

“It’s going to be one of the greatest accomplishments in medicine,” Butler said. Only the discovery of insulin in the 1920s, which changed what was once a rapidly fatal disease into a chronic condition, compares.

Bartge said researchers first coax embryonic stem cells down the same developmental path they would have followed in the body. The stem cells first transform into relatively undifferentiated endoderm, then evolve into cells like those found in the developing gut and finally transform into the buds that will grow the six-inch-long pancreas.

These bud cells are the goal. Researchers implant them into mice, either under the skin or in fat pads, where they mature into insulin-squirting islet cells. When researchers experimentally destroy the animal’s insulin-making cells, the human islet cells maintained stable blood glucose and insulin levels.

To protect the islet cells from attack, the company proposes coating them in polyethylene glycol, a gel-like substance that is impermeable to attacking immune cells but still allows the islet cells to interact with the blood. The company is also looking at other ways of isolating the new beta cells from immune attack as it begins studies in large animals. Bartge says human trials may begin in 2012.

What is it like to live with diabetes?

Maybe it was the candy, Joelle Johnson thought when the doctor explained her blood test results. She just ate too many sweets, she reasoned. That’s why her blood sugar was so high.

She couldn’t have diabetes. She was certain. “To tell you that my diagnosis caught me off guard would be a massive understatement. I went to the doctor for yeast infection,” she said. “I left the office in tears. I didn’t care what the blood test said. I refused to believe it.”

That was four years ago. Today 30-year-old Johnson, who works in marketing for Walt Disney, injects insulin into her belly five times a day. She reads labels. She calculates what she eats so she can treat herself to the occasional Big Mac.

I left the office in tears. I didn’t care what the blood test said, I refused to believe it.

JOELLE JOHNSON
On the short arm of our fourth chromosome we have a stuttering gene. Repeatedly, it instructs the creation of the amino acid glutamine. For most of us, the gene will repeat the instruction fewer than 27 times. But in a few families the code repeats 36 times, 45 times, 100 times. And in this repetition, Huntington’s disease is born.

Although the gene that pulls this wicked prank was identified in 1993, little is known about how the errant protein it makes induces uncontrolled dance-like movements, loss of cognitive ability, mood swings and death. It’s the worst aspects of Parkinson’s disease, Alzheimer’s and ALS (amyotrophic lateral sclerosis) all rolled into one,” said Robert Pacifici, Ph.D., the chief scientific officer for the private non-profit CHDI Foundation, which is looking for potential Huntington’s treatments.

In most genetic diseases, children are at risk only if both parents carry the deleterious mutation. But the Huntington’s mutation is a dominant trait, meaning that each child has a 50/50 chance of carrying the fatal mutation and developing the disease if only one parent has it.

The malformed protein has its biggest impact on the medium spiny neurons, a group of branching cells that make 90 percent of the brain’s corpus striatum. But how these neurons die isn’t clear. “We know medium spiny neurons are most affected, but we don’t know if it’s murder or suicide,” Pacifici says. Until such details are figured out, drug developers work in the dark, uncertain just what to target.

Hans Keirstead, Ph.D., co-director of the Sue and Bill Gross Stem Cell Research Center at the University of California, Irvine, is creating populations of stem cells with the Huntington’s genetic mutation to help answer some of those questions.

“It amazes me that no such stem cell lines exist right now. Not one in the entire world,” Keirstead said. With the advent of pre-implantation genetic testing, in which couples can screen embryos for disease genes before undergoing in vitro fertilization, there are now embryos with Huntington’s disease markers available. Keirstead has arranged for fertility clinics to send him embryos with markers for Huntington’s and other diseases.

But stem cells without mutations hold yet another promise. Keirstead’s laboratory can coax them to become medium spiny neuron progenitor cells. Ultimately, such cells may be able to replace the neurons targeted in Huntington’s.”That’s the beauty of the strategy,” Keirstead said. “You rely on the cells themselves.”

I surround myself with really positive and brilliant people who are going to make this the last generation with Huntington’s disease.

FRANCES SALDAÑA
What is it like to live with Parkinson’s disease?
For Bruce Wisnicki and other Parkinson’s patients, the benefit of most Parkinson’s medications might be summed up with the bromide: “This too shall pass.”

Because of the degenerative nature of the disease that depletes the dopamine producing brain cells, medications to control symptoms eventually lose their punch. “I’m one of the lucky ones,” Wisnicki says. “I have the resources to have the finest care available.” And, he adds, he’s been able to participate in many clinical trials for drugs that help control his disease.

“Here’s the catch. I have been on these drugs for many years. Over time they become much less effective.” Even when he’s doing well, Wisnicki, a 46-year-old Los Angeles resident, deals with the exaggerated, jerky movements that accompany the disease and its treatment.

“I spend half my day functioning and half my day trying to function,” he said. He was first diagnosed with Parkinson’s disease more than 10 years ago, when his two children were still toddlers.

“Parkinson’s is one of those diseases that teach us how much we really don’t know,” he said. “I hope you can find a cure so millions more people do not have to wait.”

Promise comes on little rat feet. Inky paw prints on a strip of paper show the short, tentative steps of a rat with a movement disorder caused by Parkinson’s-like brain injury. A second strip shows the long stride of a Parkinson’s model rat injected with stem cells that tamp down activity in a part of the brain overactive in Parkinson’s. This study with rat fetal stem cells points the way toward treatments for a disease which affects 1 in 100 people older than 60.

“Parkinson’s disease is really an ideal target for cell-replacement therapy, specifically because a particular cell type is lost and could be replaced,” said Arnold Kriegstein, MD, PhD, and director of the University of California, San Francisco, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research. Parkinson’s is a movement disorder characterized by the loss of neurons that make the chemical dopamine. When all works properly, the dopamine neurons extend from the midbrain to areas that control movement, including the striatum and the basal ganglia. As dopamine neurons die, the brain loses dopamine’s modulating effects. Tremors develop. Movement slows and becomes difficult to initiate. Muscles stiffen. Facial expression diminishes.

Researchers learned a great deal from work in the 1980s and ’90s in which fetal dopamine cells were transplanted into the brains of Parkinson’s patients. While the transplants had only limited success, the studies proved that transplanted cells would produce dopamine, said Jeff Bronstein, MD, PhD, director of the Movement Disorders Program at the University of California, Los Angeles.

There’s reason to think that the special characteristics of stem cells will bridge the shortcomings of fetal cells, Kriegstein said. For instance, there often weren’t enough fetal cells available to make a significant difference in transplants. “With stem cells the promise is we can make an unlimited number of cells.”

Fetal cells didn’t move beyond the site of injection and didn’t integrate well with surrounding tissue. “There’s evidence that embryonic stem cells will actually integrate much better,” he said.

Although many laboratories hope to replace dopamine-producing stem cells, Kriegstein’s animal experiments instead transplant inhibitory neural stem cells to ameliorate the effect of missing dopamine. Once injected into the rodent brain, “They migrate. They form synapses. They sprout axons that actually contact the host neurons and they function as inhibitory neurons,” he said. “And in behavioral tests, they actually improved motor function of these Parkinsonian rodents.”

Parkinson’s disease is one of those diseases that teach us how much we really don’t know.

Bruce Wisnicki
What is it like to live with deafness?

Diane Kaljian's father was paralyzed and bedridden from a stroke. But he could still speak. "I was hoping to talk to him, but I could never do that," Kaljian said. Her hearing loss was so profound, his low, gravelly voice couldn't penetrate. "I was not able to hear his last words to me," said the mother of three.

Four years ago, the year after she retired from teaching, Kaljian lost her hearing. It's transformed her life in unwelcome ways, robbing her of music, the sound of her three grandchildren's voices, and the ease of small talk.

"One of the things that's difficult is losing humor. I can't participate. And then, a burst of laughter is like a gunshot. It's too loud. It's uncomfortable."

Every once in awhile, unexpectedly, she will hear. It's never very loud, but it's clear, which gives a bit of optimism and a sense of urgency that maybe there's something left to be saved.

If there is, stem cells are her best hope, the 64-year-old Kaljian said. "Though help will likely come too late for me, being able to participate in the CIRM event made me feel that I played a small part in the help that will inevitably be available to others."
In 2008 CIRM reached beyond state lines to form alliances with key partners around the world.

These ties, in the form of partnerships, joint outreach efforts and educational campaigns, will leverage expertise worldwide in our goal of bringing new therapies to California. These activities directly help people in California by allowing CIRM-funded researchers to build collaborations and network with those international researchers whose expertise is needed to move California research to patients.

STEM CELL AWARENESS DAY

On September 25, Governor Arnold Schwarzenegger declared Stem Cell Awareness Day in California in an international partnership with Monash Immunology and Stem Cell Laboratories in Victoria, Australia.

The event began in Australia with a day of talks and public activities. A chat with stem cell scientists broadcast live in Australia from San Diego concluded the Australian event and kicked off a day in California that included web events available to people in California and throughout the world.

In the morning, a live webcast of the Spotlight on Juvenile Diabetes, given at the Governing Board meeting being held that day in San Diego, presented the hope of stem cell research in treating this debilitating disease. That afternoon, researchers throughout California were on hand to answer questions about stem cell research via live web chat.

In his proclamation, Schwarzenegger said, “An overwhelming number of Californians either suffer themselves or have a family member who suffers from a chronic disease or illness, and stem cell therapies offer great hope for improved treatments and cures to some of these conditions.”

Stem Cell Awareness Day helped people in California and worldwide better understand the path from stem cell funding to these much needed treatments and cures.

SPREADING THE WORD

It isn’t enough to support groundbreaking research. CIRM also bears the responsibility of educating Californians about stem cell research, explaining how the work can improve human health and sharing results from CIRM funding.

All of this is now available on CIRM’s Web page in the form of a Stem Cell Basics primer for stem cell research, videos about work funded by CIRM and a summary of the most notable research advances.

The site also now includes links to other organizations that have public outreach and education materials that could help the California public understand the value of the work they are funding. In addition to providing information online, people can now sign up to receive automatic emails for CIRM news, new research results, new RFAs or meeting announcements.

The videos are also available on the YouTube channel dubbed CIRM TV, which has more than 3,000 video views in its first month.

In his proclamation, Schwarzenegger said, “An overwhelming number of Californians either suffer themselves or have a family member who suffers from a chronic disease or illness, and stem cell therapies offer great hope for improved treatments and cures to some of these conditions.”

Stem Cell Awareness Day helped people in California and worldwide better understand the path from stem cell funding to these much needed treatments and cures.

CONFERENCE GRANTS UPH THE BUMP RATE

Some say the pace of science is directly correlated to the rate at which the right scientists bump into each other and exchange ideas. It doesn’t matter whether that is over a cup of coffee or in front of a formal poster presentation.

To help California stem cell researcher bump into each other more often and into the right leaders from around the nation and around the globe, CIRM launched an open-ended Request For Applications for conference grants this year.

The Governing Board approved issuing grants up to $50,000 to cover the cost of up to 50 percent of conferences held in California and organized by California researchers. Up to $300,000 in such grants can be awarded each year at the president’s discretion without going to the board for further approval.

“Scientific conferences really do inspire new ways of thinking and drive together new collaborators; they really accelerate any field,” said Marie Csete, CIRM’s chief science officer.

During 2008 the CIRM governing board approved 97 grants that will pay out $376 million during the duration of the funded projects. That brings the total grants awarded by CIRM through 2008 to 224 totaling more than $635 million.

For a full report on CIRM finances visit the annual report online at www.cirm.ca.gov.
“Every family knows they are one phone call or one diagnosis away from needing what stem cell research can yield for us.”

SPEAKER NANCY PELOSI

Neurosphere derived from human embryonic stem cells giving rise to nerve cells.