DEVELOPMENT OF CELL THERAPIES FOR PARKINSON'S DISEASE: LESSONS LEARNED AND CHALLENGES AHEAD

SHERYL OSBORNE CONSULTANT

DEVELOPMENT PATHWAY

- Selection of candidate cell line
- Manufacturing/testing plan
- Preclinical studies
- Interactions with FDA
- Phase 1 First-in-human study
- Continued clinical development

SELECTION OF CELL LINE

hESC

- Large scale MCB can be generated
- hiPSC
 - Avoids ethical concerns with hESCs
 - Autologous or allogeneic strategies possible
 - Minimizes immune effects and need for immunosuppression
- Combination cell/gene therapy
 - Synergistic effect with gene of interest (e.g., growth factors)
- GOAL IS TO GENERATE FUNCTIONAL
 DOPAMINERGIC NEURONS

MANUFACTURING PLAN

- Identification of scale
 - Adequate product for quality testing, nonclinical studies, clinical studies + stability program and retains
- Selection of GMP manufacturing site
- Process transfer/process development
 - Scale up considerations
 - Adherent culture systems limited in scale; suspension adaptation necessary
 - Avoidance of products of animal origin
 - Identify key process parameters of potential sources of variability
- Concomitant assay development
 - Identify critical quality attributes and set specifications/limits

KEY PROCESS PARAMETERS FOR hiPSC MANUFACTURE

- Harvest tissue
- Dissociate
- Reprogram cells using genes, proteins, chemicals
- Clonal selection
- Selection of stable cell for expansion and banking
- Establish/qualify Master Cell Bank
- Thaw, expand, and differentiate
- Harvest and delivery to patient

PRECLINICAL STUDIES

Goals

- Demonstrate Proof of Concept in animal model(s) of disease
- Determine the Minimal Effective Dose and Maximum Feasible Dose for use in Safety/Tox and Tumorigenicity Studies
- Establish safety profile for cell treatment
- Confirm lack of tumorigenicity

PRECLINICAL STUDIES ANIMAL MODELS

- Neurotoxin models
 - Acute toxic effect -> Stable lesion
 - Non-pathogenic mechanism
 - Rodent (6-OHDA or MPTP)
 - Non-Human Primate (MPTP)
 - Suitable for restorative interventions
- Genetic models
 - Progressive pathology
 - May replicate a pathological mechanism of PD
- Aged animals
- Non-Human Primates >15-20 years of age present pathological changes in nigro-striatal neurons

ASSAY DEVELOPMENT

- In vitro characterization for preclinical testing
 - Neurophysiological profile
 - Dopamine production and metabolites (DOPAC and HVA)
 - Assays for assessment of cell survival, engraftment, migration
- Other assessments for evaluation biological/functional responses in animal models
- Biological assays for release of product
 - Potency must correlate to predictable functional outcomes

NON-HUMAN PRIMATE MPTP-LESION

- Gold standard PD model
- Intravenous or intracarotid artery delivery
 - Pros
 - Parkinsonian motor deficits with established rating scales
 - Stable pathology from mild to extensive loss of dopaminergic neurons
 - Anatomical organization of NHP brain is consistent with human brain
 - Cons
 - Intra-animal variability in MPTP sensitivity
 - Less suitable for investigating neuro-protective interventions
 - Expensive, need personnel experienced with the model

SCALING CONSIDERATIONS

- Scaling factors for Rodent -> NHP -> Human
 - Volume of target structure
 - Mouse striatum
 12 mm³
 - Rat striatum 25 mm³
 - NHP Putamen 1200 mm³
 - Human Putamen 4000 mm³
 - Brain volume and architecture present a challenge in scaling up local delivery procedures from small animal models to the clinical reality
 - Dose based on volume of target structure
 - Consider both concentration and volume
 - Balance increased distribution vs risk of off-target delivery

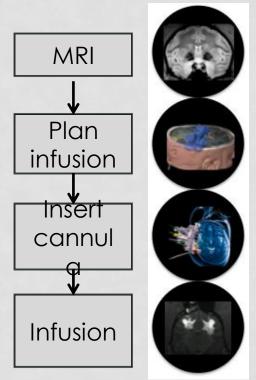
DELIVERY CONSIDERATIONS

- What is the clinical target structure?
 - Consideration of pathological changes
 - Degeneration of nigro-striatal fibers
 - Putamen, Caudate Nucleus and/or Substantia nigra
- How much coverage of the target is required?
 - Broad distribution within the target maybe necessary for clinical effect. Early PD gene therapy studies had limited distribution
 - Focus on specific areas of the target structure. Postcommissural putamen is more affected in PD than anterior putamen or caudate nucleus but more challenging to target
- Are there adverse effects from delivery to non-targeted regions?
 - Off-target effects of GDNF in the mid-brain included weight
 loss in NHP

DELIVERY CONSIDERATIONS

- Is there a suitable delivery device for clinical use?
 - Development of specialized reflux-resistant cannula for infusion of large volumes of gene therapy vectors
- How accurate is the delivery device?
 - Surgical targeting error is a significant issue that can be minimized by intra-operative imaging.
 - Development of neuro-navigational devices for use with real-time MRI guidance and monitoring
- How much coverage can be achieved from a single target site?
 - Targeting large structures (e.g. putamen) requires multiple delivery sites to optimize target coverage
 - How far will the cells migrate beyond the initial site of delivery
 - Can intra-operative imaging be used to visualize distribution
- How many sites can be safely targeted?
 - Targeting multiple sites in the putamen and/or substantia nigra

DELIVERY SYSTEM


- How will the cell therapy be handled at the clinical site/in the OR?
 - Stability of the product
 - Final formulation at clinical site
 - Quantity required to account for dead-volumes and priming of delivery devices
 - Procedures for maintaining sterility during loading
- Are there surgical constraints?
 - Duration of surgery
 - Resources required to support surgical procedure
 - Biosafety considerations

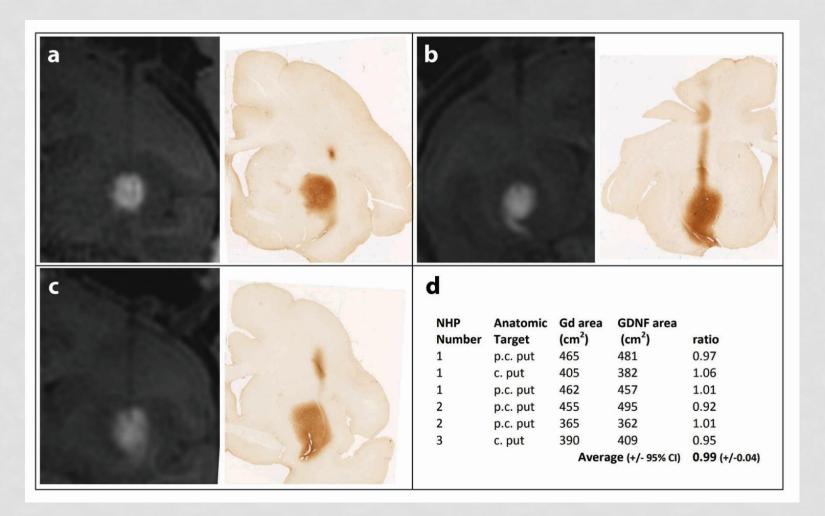
DELIVERY SYSTEM OPTIONS

- Hand injections
 - Simple, "low tech"
 - Easiest to implement, feeling of control on the part of the surgeon
 - Not consistent delivery cannot control or know the precise infusion rate
 - Not consistent delivery cannot control or know the precise infusion rate
 - Not capable of doing true convection enhanced delivery
 - No additional regulatory considerations
- Infusion pumps
 - Most consistent method, offers most control over infusion rate
 - True convection enhanced delivery
 - Can be tedious to program and operate
 - Off label use

STATE OF THE ART DELIVERY

 Integrated CED platform for delivery of viral vectors to the brain developed in support of ongoing AAV2-AADC and AAV2-GDNF clinical trials in PD

Imaging


Diagnostic pre-infusion Measurement of porous expansion Software

> DTI-based simulation Shape fitting for inverse planning

Hardware

Acute iMRI CED (MRII, BrainLab)

CORRELATION BETWEEN PUTAMINAL DISTRIBUTION OF GD TRACER AND GDNF EXPRESSION

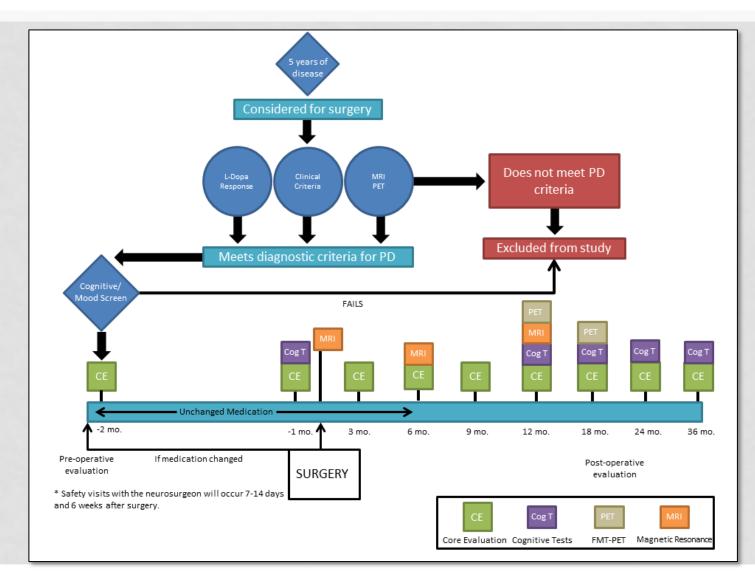
INTERACTIONS WITH FDA

- Early consultation with Pharm/Tox
 - Present draft Clinical Synopsis and well thought out Preclinical Plan
 - Agree on design, timepoints and endpoints of preclinical studies (in vitro and in vivo)
 - Agree on scaling factors between animal models and human
 - Identify the need for consults with other Centers
 - Off label use of other regulated products; novel products
- Pre-IND
 - Present Manufacturing/Testing Plan
 - Present/discuss any relevant nonclinical findings
 - Present planned Clinical Synopsis

INTERACTIONS WITH FDA (CON'T)

- Agree on Patient Enrollment Criteria
 - First-in-human studies with significant risk therapeutic strategies will begin in later stage patients; subsequent studies will gradually include those subjects with greater chance of clinical response once safety is established
- Agree on interval between individual subjects/dose cohorts
- Agree on definition of Dose Limiting Toxicity
- Agree on Stopping Rules
- Agree on intervention/mitigation strategy for significant risks

CLINICAL STUDY SAFETY CONSIDERATIONS


Risks

- Intracranial hemorrhage probably similar to DBS, 2-3%
- Infection similar to brain biopsy, approx 1%
- Reflux/non-targeted delivery depends on cannula design, infusion rate, local tissue characteristics, cannula stability in tissue
- Emergent psychopathology
- Dyskinesias
- Prospectively design the plan for monitoring and intervention as necessary

CELL AND GENE THERAPY AND DEEP BRAIN STIMULATION (DBS)

- DBS is the current gold standard for the surgical treatment of Parkinson's disease
 - Can deter patients from investigational clinical studies since it provides relatively reliable and predictable improvement in PD symptoms
 - Can also "reassure" patients in investigational studies, as they know they can eventually chose to have DBS if investigational therapy is unsuccessful
 - Confounder in clinical study assessments

GENERAL SCHEMA FOR PHASE 1 CLINICAL STUDY

FINANCIAL CHALLENGES

- Surgery
- Biomarkers
 - MRI \$6,5000
 - PET/FMT \$17,000 for pre and post

CHALLENGES FOR SUBJECTS

- Lengthy surgery
- Long term commitment to Study Visits (~3 years)
- Lengthy Study Visits for PD assessments
 - Cognitive
 - Functional
 - Both in ON and OFF states
 - Biomarkers (e.g., PET, response to L-Dopa challenge)
 - May require travel
 - May be uncomfortable
- Patient diaries
- Delaying decision for DBS

CHALLENGES FOR FURTHER CLINICAL DEVELOPMENT

- Moving quickly to younger/less advanced Parkinson's patients
- Identification of the appropriate biomarkers/outcome measures (MRI, PET) to be used in selection of dose levels for further clinical studies
- Need for sham surgeries in later stage controlled clinical studies
- Large number of patient/subjects required to meet clinical benefit target of 60% improvement in UPDRS Motor Score
- ? Identification of Surrogate Endpoints
- Co-development of novel delivery system (Combination Product)

COLLABORATORS

- University of California San Francisco
 - Krys Bankiewicz, MD, PhD
 - Paul Larson, MD
- Cedars-Sinai, Regenerative Medicine Institute
 - Clive Svendsen, PhD