Year 3

We are investigating the molecular mechanisms underlying two major neurological diseases: Parkinson’s disease (PD) and Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease. In the past year, we have taken our previously developed human embryonic stem cell (hESC)-based cell culture model for PD and ALS another step further: we have begun building an assay system that may eventually allow both the identification of biomarkers for early diagnosis and the screening of drug candidates for ALS and PD. By transplanting hESC-derived neurons into live animals and brain slices, we have also made first inroads into recapitulating the disease processes in animal model systems.

While the causes and symptoms of ALS and PD are very different, they share one aspect in common: in both, patients gradually lose specific types of nerve cells, namely, the so-called dopaminergic neurons in PD, and motor neurons in ALS; it this neuron death that causes both diseases. Previously, we showed with our hESC-based cell culture system that an inflammatory response in astrocytes (the brain cells that provide metabolic and structural support to neurons) is involved in loss of motor neurons. Similarly, we demonstrated that microglia (the brain’s immune cells) and astrocytes together protect dopaminergic neurons from exaggerated production of inflammation-induced neurotoxic mediators. This function of astrocytes and microglia was dependent on a protein called Nurr1: we found that the Nurr1 gene is turned on by inflammatory signals and suppresses genes that encode neurotoxic factors.

We have now begun to characterize in depth the specific signaling molecules that communicate the inflammation cue from the glial cells to neurons. To do this, we cultured astrocytes and microglia in the petri dish, induced inflammation and collected cell culture supernatants from the ‘inflamed’ and normal cells. We then measured the levels of specific so-called cytokines, the inflammatory signaling molecules secreted by the glial cells. Once we have obtained a characteristic cytokine ‘signature’ of disease-associated glial cells, we can begin to unravel the molecular pathways that lead to inflammation. Thus our research may lead to the discovery of early diagnostic markers and enable drug screening for compounds that suppress or prevent these neurotoxic inflammatory processes.

Our cell culture assays have provided a great deal of insight into the signaling cascades that eventually lead to neuron death. However, they probably cannot fully recapitulate the complex interplay between the neurons and the cellular environment in which they reside within the brain. We have therefore begun to transplant hESC-derived neurons into the brains of mice. Our results indicate that the neurons rapidly extended processes and developed dendritic branches and axons that integrated into the existing neuronal network. In the coming year, we plan to build on these results, using our hESC-derived neuronal models of PD and ALS to better understand mechanisms of dysregulation. Specifically, we will examine alterations in synapse formation, cell survival, and neuron maturation. We will also devise strategies for functional recovery and rescue in the context of the living animal.