Light-Patterned RNA Interference of 3D-Cultured Human Embryonic Stem Cells.
Publication Year:
2016
PubMed ID:
27787919
Funding Grants:
- Stem cell based treatment strategy for Age-related Macular Degeneration (AMD)
- Phase 1 Safety Assessment of CPCB-RPE1, hESC-derived RPE Cell Coated Parylene Membrane Implants, in Patients with Advanced Dry Age Related Macular Degeneration
- Stem cell based treatment strategy for Age-related Macular Degeneration (AMD)
Public Summary:
A new method of spatially controlled gene regulation in 3D-cultured human embryonic stem cells is developed using hollow gold nanoshells (HGNs) and near-infrared (NIR) light. Targeted cell(s) are discriminated from neighboring cell(s) by focusing NIR light emitted from a two-photon microscope. Irradiation of cells that have internalized HGNs releases surface attached siRNAs and leads to concomitant gene downregulation.
Scientific Abstract:
A new method of spatially controlled gene regulation in 3D-cultured human embryonic stem cells is developed using hollow gold nanoshells (HGNs) and near-infrared (NIR) light. Targeted cell(s) are discriminated from neighboring cell(s) by focusing NIR light emitted from a two-photon microscope. Irradiation of cells that have internalized HGNs releases surface attached siRNAs and leads to concomitant gene downregulation.