Smek1/2 is a nuclear chaperone and cofactor for cleaved Wnt receptor Ryk, regulating cortical neurogenesis.
Publication Year:
2017
PubMed ID:
29180410
Funding Grants:
Public Summary:
The receptor-like tyrosine kinase (Ryk), a Wnt receptor, is important for cell fate determination during corticogenesis. During neuronal differentiation, the Ryk intracellular domain (ICD) is cleaved. Cleavage of Ryk and nuclear translocation of Ryk-ICD are required for neuronal differentiation. However, the mechanism of translocation and how it regulates neuronal differentiation remain unclear. Here, we identified Smek1 and Smek2 as Ryk-ICD partners that regulate its nuclear localization and function together with Ryk-ICD in the nucleus through chromatin recruitment and gene transcription regulation. Smek1/2 double knockout mice displayed pronounced defects in the production of cortical neurons, especially interneurons, while the neural stem cell population increased. In addition, both Smek and Ryk-ICD bound to the Dlx1/2 intergenic regulator element and were involved in its transcriptional regulation. These findings demonstrate a mechanism of the Ryk signaling pathway in which Smek1/2 and Ryk-ICD work together to mediate neural cell fate during corticogenesis.
Scientific Abstract:
The receptor-like tyrosine kinase (Ryk), a Wnt receptor, is important for cell fate determination during corticogenesis. During neuronal differentiation, the Ryk intracellular domain (ICD) is cleaved. Cleavage of Ryk and nuclear translocation of Ryk-ICD are required for neuronal differentiation. However, the mechanism of translocation and how it regulates neuronal differentiation remain unclear. Here, we identified Smek1 and Smek2 as Ryk-ICD partners that regulate its nuclear localization and function together with Ryk-ICD in the nucleus through chromatin recruitment and gene transcription regulation. Smek1/2 double knockout mice displayed pronounced defects in the production of cortical neurons, especially interneurons, while the neural stem cell population increased. In addition, both Smek and Ryk-ICD bound to the Dlx1/2 intergenic regulator element and were involved in its transcriptional regulation. These findings demonstrate a mechanism of the Ryk signaling pathway in which Smek1/2 and Ryk-ICD work together to mediate neural cell fate during corticogenesis.