TETonic shift: biological roles of TET proteins in DNA demethylation and transcription.
Publication Year:
2013
PubMed ID:
23698584
Funding Grants:
Public Summary:
In many organisms, the methylation of cytosine in DNA has a key role in silencing 'parasitic' DNA elements, regulating transcription and establishing cellular identity. The recent discovery that ten-eleven translocation (TET) proteins are 5-methylcytosine oxidases has provided several chemically plausible pathways for the reversal of DNA methylation, thus triggering a paradigm shift in our understanding of how changes in DNA methylation are coupled to cell differentiation, embryonic development and cancer.
Scientific Abstract:
In many organisms, the methylation of cytosine in DNA has a key role in silencing 'parasitic' DNA elements, regulating transcription and establishing cellular identity. The recent discovery that ten-eleven translocation (TET) proteins are 5-methylcytosine oxidases has provided several chemically plausible pathways for the reversal of DNA methylation, thus triggering a paradigm shift in our understanding of how changes in DNA methylation are coupled to cell differentiation, embryonic development and cancer.