Cell Line Generation: iPS Cell
Human Stem-Cell Based Development of a Potent Alzheimer’s Drug Candidate
Over 6 million people in the US suffer from Alzheimer’s disease (AD). There are no drugs that prevent the death of nerve cells in AD, nor has any drug been identified that can stimulate nerve cell replacement in aged human brain. Importantly, even if nerve cells could be replaced, the toxic environment of the AD […]
A Chromatin Context Tool for Predicting iPS Lineage Predisposition and Tissue Graftability
Induced pluripotent stem (iPS) cells are cells derived from skin that closely resemble embryonic stem (ES) cells and can be coaxed into many different types of cells such as nerve cells, heart cells, liver cells, and also back to skin cells. One major bottleneck in the field is our ability to coax the cells into […]
Center of Excellence for Stem Cell Genomics – Stanford
The Center of Excellence in Stem Cell Genomics will bring together investigators from seven major California research institutions to bridge two fields – genomics and pluripotent stem cell research. The projects will combine the strengths of the center team members, each of whom is a leader in one or both fields. The program directors have […]
Metabolically-driven epigenetic changes in iPSC reprogramming
Generation of induced pluripotent stem cells (iPSCs) from somatic cells through cellular reprogramming offers tremendous potential for therapeutics, the study of disease states, and elucidation of developmental processes. Central to the process of generating a pluripotent cell from a somatic cell is an energy-dependent epigenetic reconfiguration event that must occur to produce iPSCs with characteristics […]
Elucidating pathways from hereditary Alzheimer mutations to pathological tau phenotypes
We propose to elucidate pathways of genes that lead from early causes to later defects in Alzheimer’s Disease (AD), which is common, fatal, and for which no effective disease-modifying drugs are available. Because no effective AD treatment is available or imminent, we propose to discover novel genetic pathways by screening purified human brain cells made […]
Improving Existing Drugs for Long QT Syndrome type 3 (LQT3) by hiPSC Disease-in-Dish Model
This project uses patient hiPSC-derived cardiomyocytes to develop a safe and effective drug to treat a serious heart health condition. This research and product development will provide a novel method for a human genetic heart disorder characterized by long delay (long Q-T interval) between heart beats caused by mutations in the Na+ channel α subunit. […]
Gene therapy-corrected autologous hepatocyte-like cells from induced pluripotent stem cells for the treatment of pediatric single enzyme disorders
Liver transplantation (LT) has been used to treat a variety of liver diseases. Within hours after birth, neonates can present with disorders of the urea cycle (UCDs), the critical metabolic liver pathway needed to detoxify waste nitrogen from the diet and cellular turnover. The overall incidence of UCDs is estimated to be 1 in 8200 […]
Development of a cell and gene based therapy for hemophilia
Hemophilia B is a bleeding disorder caused by the lack of FIX in the plasma and affects 1/30,000 males. Patients suffer from recurrent bleeds in soft tissues leading to physical disability in addition to life threatening bleeds. Current treatment (based on FIX infusion) is transient and plagued by increased risk for blood-borne infections (HCV, HIV), […]
Engineered iPSC for therapy of limb girdle muscular dystrophy type 2B
Limb girdle muscular dystrophy type 2B (LGMD 2B) is a form of muscular dystrophy that leads to muscle degeneration and disability. In LGMD 2B, a vital muscle protein is mutated, and its absence leads to progressive degeneration of muscles in the body that are needed for mobility. To create a therapy, we will provide a […]
Generation and characterization of high-quality, footprint-free human induced pluripotent stem cell lines from 3,000 donors to investigate multigenic diseases
Induced pluripotent stem cells (iPSCs) have the potential to differentiate to nearly any cells of the body, thereby providing a new paradigm for studying normal and aberrant biological networks in nearly all stages of development. Donor-specific iPSCs and differentiated cells made from them can be used for basic and applied research, for developing better disease […]