Disease Focus: Amyotrophic Lateral Sclerosis
Progenitor Cells Secreting GDNF for the Treatment of ALS
This project aims to use a powerful combined neural progenitor cell and growth factor approach to treat patients with amyotrophic lateral sclerosis (ALS or Lou Gehrig’s Disease). ALS is a devastating disease for which there is no treatment or cure. Progression from early muscle twitches to complete paralysis and death usually happens within 4 years. […]
Molecules to Correct Aberrant RNA Signature in Human Diseased Neurons
Approximately 5,600 people in the U.S. are diagnosed with ALS each year. The incidence of ALS is two per 100,000 people, and it is estimated that as many as 30,000 Americans may have the disease at any given time. There are no effective therapies of ALS to-date. Recent genetic discoveries have pinpointed mutations that lead […]
Stem Cells Secreting GDNF for the Treatment of ALS
This project aims to use a powerful combined stem cell and gene therapy approach to treat patients with amyotrophic lateral sclerosis (ALS or Lou Gehrig’s Disease). ALS is a devastating disease for which there is no treatment or cure. Progression from early muscle twitches to complete paralysis and death usually happens within 4 years. Every […]
Neural and general splicing factors control self-renewal, neural survival and differentiation
Human embryonic and patient-specific induced pluripotent stem cells have the remarkable capacity to differentiate into many cell-types, including neurons, thus enabling the modeling of human neurological diseases in vitro, and permit the screening of molecules to correct diseases. Maintaining the pluripotent state of the stem cell, directing the stem cell towards a neuronal lineage, keeping […]
Molecular Imaging for Stem Cell Science and Clinical Application
Stem cells offer tremendous potential to treat previously intractable diseases. The clinical translation of these therapies, however, presents unique challenges. One challenge is the absence of robust methods to monitor cell location and fate after delivery to the body. The delivery and biological distribution of stem cells over time can be much less predictable compared […]
Molecular mechanisms of neural stem cell differentiation in the developing brain
One of the most exciting possibilities in stem cell biology is the potential to replace damaged or diseased neural tissues affected by neurodegenerative disorders. Stem-cell-derived neurons provide a potentially limitless supply of replacement cells to repair damaged or diseased neurons. Typically, only one or a very few types of neurons are affected in most neurodegenerative […]
Generation of disease models for neurodegenerative disorders in hESCs by gene targeting
The ability to target a specific locus in the mouse genome and to alter it in a specific fashion has fundamentally changed experimental design and made mice the preeminent model for studying human diseases . However, pathogenesis in humans have unique pathways that may not be revealed by only using mouse or other animal models. […]
High throughput modeling of human neurodegenerative diseases in embryonic stem cells
An important class of neurological diseases predominantly affects spinal motor neurons, the neurons that control muscle movement. The most well known of these motor neuronopathies is Amyotrophic Lateral Sclerosis (ALS), commonly referred to as Lou Gehrig’s disease for the famous Yankee first baseman who died of the disease. The first symptoms of ALS are usually […]
Generation of clinical grade human iPS cells
The therapeutic use of stem cells depends on the availability of pluripotent cells that are not limited by technical, ethical or immunological considerations. The goal of this proposal is to develop and bank safe and well-characterized patient-specific pluripotent stem cell lines that can be used to study and potentially ameliorate human diseases. Several groups, including […]
Development of Induced Pluripotent Stem Cells for Modeling Human Disease
Human embryonic stem cells (hESC) hold great promise in regenerative medicine and cell replacement therapies because of their unique ability to self-renew and their developmental potential to form all cell lineages in the body. Traditional techniques for generating hESC rely on surplus IVF embryos and are incompatible with the generation of genetically diverse, patient or […]