Disease Focus: Blood Disorders
Differentiation of Human Hematopoietic Stem Cells into iNKT Cells
Blood stem cells living in the bone marrow of adult humans give rise to all of the cells in our blood, including the red blood cells that carry oxygen to supply our body, and the white blood cells such as T and B lymphocytes that fight infections and keep us healthy. Among the T lymphocytes […]
Clinical Trial of Stem Cell Gene Therapy for Sickle Cell Disease
Sickle cell disease (SCD)results from an inherited mutation in the hemoglobin gene that causes red blood cells to “sickle” under conditions of low oxygen. It occurs with a frequency of 1/500 African-Americans, and is also common in Hispanic-Americans, who comprise up to 5% of SCD patients in California. The median survival based on 1991 national […]
A Treatment For Beta-thalassemia via High-Efficiency Targeted Genome Editing of Hematopoietic Stem Cells
β-thalassemia is a genetic disease caused by diverse mutations of the β-globin gene that lead to profoundly reduced red blood cell (RBC) development. The unmet medical need in transfusion-dependent β-thalassemia is significant, with life expectancy of only ~30-50 years despite standard of care treatment of chronic blood transfusions and iron chelation therapy. Cardiomyopathy due to […]
Beta-Globin Gene Correction of Sickle Cell Disease in Hematopoietic Stem Cells
Disorders affecting the blood, including Sickle Cell Disease (SCD), are the most common genetic disorders in the world. SCD causes significant suffering and early death, despite major improvements in medical management and advances in understanding the complex disease-related biology. A bone marrow transplant (BMT) can greatly benefit patients with SCD, by providing a life-long source […]
Development of a cell and gene based therapy for hemophilia
Hemophilia B is a bleeding disorder caused by the lack of FIX in the plasma and affects 1/30,000 males. Patients suffer from recurrent bleeds in soft tissues leading to physical disability in addition to life threatening bleeds. Current treatment (based on FIX infusion) is transient and plagued by increased risk for blood-borne infections (HCV, HIV), […]
A Phase 1/2, Open Label Study Evaluating the Safety and Efficacy of Gene Therapy in Subjects with β-Thalassemia by Transplantation of Autologous Hematopoietic Stem Cells Transduced with the Lentiviral Vector LentiGlobin® Encoding the Human β-A-T87Q-…
[REDACTED] plans to carry out a Phase 1/2 study to evaluate the safety and efficacy of [REDACTED] for the treatment of β-Thalassemia Major(BTM). [REDACTED] consists of autologous patient hematopoietic stem cells(HSC) that have been genetically modified ex vivo with a lentiviral vector that encodes a therapeutic form of the β-globin gene. [REDACTED] is administered through […]
In Utero Embryonic Stem Cell Transplantation to Treat Congenital Anomalies
Many fetuses with congenital blood stem cell disorders such as sickle cell disease or thalassemia are prenatally diagnosed early enough in pregnancy to be treated with stem cell transplantation. The main benefit to treating these diseases before birth is that the immature fetal immune system may accept transplanted cells without needing to use immunosuppressant drugs […]
Human endothelial reprogramming for hematopoietic stem cell therapy.
The current roadblocks to hematopoietic stem cell (HSC) therapies include the rarity of matched donors for bone marrow transplant, engraftment failures, common shortages of donated blood, and the inability to expand HSCs ex vivo in large numbers. These major obstacles would cease to exist if an extensive, bankable, inexhaustible, and patient-matched supply of blood were […]
A monoclonal antibody that depletes blood stem cells and enables chemotherapy free transplants
Successful stem cell therapy requires the replacement of diseased or dysfunctional stem cells with healthy ones. These healthy stem cells can come from either a donor or can be stem cells that are modified by gene therapy techniques. One important step in this process of repair and replacement is to eliminate the existing diseased cells […]
Forming the Hematopoietic Niche from Human Pluripotent Stem Cells
The clinical potential of pluripotent stem cells for use in regenerative medicine will be realized only when the process by which tissues are generated from these cells is significantly more efficient and controlled than is currently the case. Fundamental questions remain about the mechanisms by which pluripotent stem cells differentiate into mature tissue. The overall […]