Disease Focus: Bone or Cartilage Disease


Treatment of non-traumatic osteonecrosis with endogenous Mesenchymal stem cells

Although most individuals are aware that osteoporosis is disease of increased bone fragility that results from estrogen deficiency and aging, most are unaware of the high risk and cost of the disorder. It is estimated that close to 30% of the fractures that occur in the United States each year are due to osteoporosis (Schwartz […]

Tissue engineered cartilage from autologous, dermis-isolated, adult, stem (DIAS) cells

This study addresses the cartilage defects resulting from injuries or from wear-and-tear that can eventually degenerate to osteoarthritis. This is a significant problem that impacts millions and costs in excess of $65B per annum in the US alone. Addressing this indication successfully holds potential for halting the progression of cartilage damage before it destroys the […]

Genetically Engineered Mesenchymal Stem Cells for the Treatment of Vertebral Compression Fractures.

Osteoporosis is an unsolved and highly prevalent health care problem: 10 million Americans suffer from the disease, and an additional 34 million have low bone mass. Roughly half of all women and a fourth of all men older than 50 years will sustain an osteoporosis-related fracture at some time in their lives, and when such […]

Increasing the endogenous mesenchymal stem cells to the bone surface to treat osteoporosis

Although most individuals are aware that osteoporosis is disease of increased bone fragility that results from estrogen deficiency and aging, most are unaware of the high risk and cost of the disorder. It is estimated that close to 30% of the fractures that occur in the United States each year are due to osteoporosis (Schwartz […]

Clinical Development of an osteoinductive therapy to prevent osteoporosis-related fractures

There are over 1.5 million osteoporotic fractures annually in the USA alone, at a cost of approximately $15 billion each year. The majority of these fractures occur in the spine, followed by the hip and wrist. Incidence varies according to age; vertebral fracture rates increase rapidly by the sixth decade of life, whereas the risk […]

Systemic Adult Stem Cell Therapy for Osteoporosis-Related Vertebral Compression Fractures

Vertebral compression fractures are the most common fractures associated with osteoporosis. Approximately 700,000 osteoporosis-related vertebral compression fractures (OVCFs) occur each year in the US. Currently, treatment is focused primarily on prevention. When fractures occur in patients with osteoporosis, treatment options are limited because open surgery with implants often fails. Recently, new therapies involving injection of […]

Harnessing native fat-residing stem cells for bone regeneration

Like most tissues of the body, bone possesses a natural regenerative system aimed at restoring cells and tissues lost to natural cell aging, disease or injury. These natural regenerative systems are complex combinations of cell growth factors and support structures that guide and control the development of specialized bone stem cells. However, the regeneration process […]

Cartilage Regeneration by the Chondrogenic Small Molecule PRO1 during Osteoarthritis

The ability to direct the differentiation of resident mesenchymal stem cells (MSCs) towards the cartilage lineage offers considerable promise for the regeneration of articular cartilage after traumatic joint injury or age-related osteoarthritis (OA). MSCs can be stimulated in vitro to form new functional cartilage. In the OA-affected joint, the repair is insufficient, leaving a damaged […]

Oral and Craniofacial Reconstruction Using Mesenchymal Stem Cells

The overall goal of this proposal is to explore a new stem cell-based treatment for major defects in the orofacial regions resulted from burns, physical injuries, genetic diseases, cancers, infectious diseases, and recently, bisphosphonate-associated osteonecrosis of the jaw (BONJ), using the patient’s own stem cells obtained from the oral cavity known as orofacial mesenchymal stem […]

Enhancing healing via Wnt-protein mediated activation of endogenous stem cells

All adult tissues contain stem cells. Some tissues, like bone marrow and skin, harbor more adult stem cells; other tissues, like muscle, have fewer. When a tissue or organ is injured these stem cells possess a remarkable ability to divide and multiply. In the end, the ability of a tissue to repair itself seems to […]