Disease Focus: Heart Disease


Phase I study of IM Injection of VEGF Producing MSC for the Treatment of Critical Limb Ischemia

Critical limb ischemia (CLI) represents a significant unmet medical need without any approved medical therapies for patients who fail surgical or angioplasty procedures to restore blood flow to the lower leg. CLI affects 2 million people in the U.S. and is associated with an increased risk of leg amputation and death. Amputation rates in patients […]

Preclinical Development and First-In-Human Testing of GRNCM1 in Advanced Heart Failure

This application seeks to bring to the clinic a new treatment for myocardial disease based on human embryonic stem cell (hESC) derived cardiomyocytes. hESC-cardiomyocytes have the unique potential to address the underlying cause of heart disease by repopulating areas of damaged myocardium (heart tissue) with viable cardiac cells. This therapeutic approach represents a potential breakthrough […]

Human Embryonic Stem Cell-Derived Cardiomyocytes for Patients with End Stage Heart Failure

Patients with end-stage heart failure (ESHF) have a 2-year survival rate of 50% with conventional medical therapy. This dismal survival rate is actually significantly worse than patients with AIDS, liver cirrhosis, stroke, and other debilitating diseases. Stem cell therapy may be a promising strategy for inducing myocardial regeneration via paracrine activation, prevention of cardiac apoptosis, […]

Mechanisms of Direct Cardiac Reprogramming

Heart disease is a leading cause of adult and childhood mortality. The underlying pathology is typically loss of heart muscle cells that leads to heart failure, or improper development of specialized cardiac muscle cells called cardiomyocytes during embryonic development that leads to congenital heart malformations. Because cardiomyocytes have little or no regenerative capacity after birth, […]

Elucidating Molecular Basis of Hypertrophic Cardiomyopathy with Human Induced Pluripotent Stem Cells

Familial hypertrophic cardiomyopathy (HCM) is the leading cause of sudden cardiac death in young people, including trained athletes, and is the most common inherited heart defect. Until now, studies in humans with HCM have been limited by a variety of factors, including variable environmental stimuli which may differ between individuals (e.g., diet, exercise, and lifestyle), […]

Characterization and Engineering of the Cardiac Stem Cell Niche

Despite therapeutic advances, cardiovascular disease remains a leading cause of mortality and morbidity in both California and Europe. New insights into disease pathology, models to expedite in vitro testing and regenerative therapies would have an enormous societal and financial impact. Although very promising, practical application of pluripotent stem cells or their derivatives face a number […]

Molecular Mechanisms Underlying Human Cardiac Cell Junction Maturation and Disease Using Human iPSC

Heart disease is the number one cause of death and disability in California and in the United States. Especially devastating is Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), an inherited form of heart disease associated with a high frequency of arrhythmias and sudden cardiac death in young people, including young athletes, who despite their appearance of health […]

Antibody tools to deplete or isolate teratogenic, cardiac, and blood stem cells from hESCs

Purity is as important for cell-based therapies as it is for treatments based on small-molecule drugs or biologics. Pluripotent stem cells possess two properties: they are capable of self regeneration and they can differentiate to all different tissue types (i.e. muscle, brain, heart, etc.). Despite the promise of pluripotent stem cells as a tool for […]

Engineering microscale tissue constructs from human pluripotent stem cells

Tissues derived from stem cells can serve multiple purposes to enhance biomedical therapies. Human tissues engineered from stem cells hold tremendous potential to serve as better substrates for the discovery and development of new drugs, accurately model development or disease progression, and one day ultimately be used directly to repair, restore and replace traumatically injured […]

Transcriptional Regulation of Cardiac Pacemaker Cell Progenitors

Congenital and acquired defects of cardiac pacemakers are leading causes of morbidity and mortality in our society. Dysfunctions of the SA node and the lower conduction cells lead to a variety of complex arrhythmias that typically necessitate anti-arrhythmic therapy and implantation of devices. These treatments have significant limitations in their efficacy and risk-benefit ratio. Thus, […]