Disease Focus: Heart Disease


Embryonic Stem Cell-Derived Therapies Targeting Cardiac Ischemic Disease

Cardiovascular disease (CVD) is the leading cause of death in the United States. Over one million Americans will suffer from a new or recurrent heart attacks this year and over 40 percent of those will die suddenly. In addition, about two-thirds of the patients develop congestive heart failure; and in people diagnosed with CHF, sudden […]

Development of Neuro-Coupled Human Embryonic Stem Cell-Derived Cardiac Pacemaker Cells.

Optimal cardiac function depends on the properly coordinated cardiac conduction system (CCS). The CCS is a group of specialized cells responsible for generating cardiac rhythm and conducting these signals efficiently to working myocardium. This specialized CCS includes the sinoatrial node, atrioventricular node and His-Purkinje system. These specialized pacemaking /conducting cells have different properties from the […]

In Vivo Molecular Magnetic Resonance Imaging of Human Embryonic Stem Cells in Murine Model of Myocardial Infarction

Magnetic resonance imaging (MRI) has emerged as one of the predominant modalities to evaluate the effects of stem cells in restoring the injured myocardium. However, MRI does not enable assessment of a fundamental issue in cell therapy, survival of the transplanted cells. The transplanted human embryonic cells (hESC) must at the very least survive to […]

Technology for hESC-Derived Cardiomyocyte Differentiation and Optimization of Graft-Host Integration in Adult Myocardium

Stem cells therapies hold great promise in the treatment of cardiac diseases such as coronary heart disease or congestive heart failure. Thanks to their ability to transform into almost any kind of tissue, engrafted stem cells can potentially replace damaged heart tissues with healthy tissues, effectively restoring the heart’s original functions. While initial studies demonstrated […]

Micro Platform for Controlled Cardiac Myocyte Differentiation

Congestive heart failure, the inability of the heart to continue to pump effectively due to damage of its muscle cells, affects approximately 4.8 million Americans and is a leading cause of mortality. Causes of the irreversible damage to the cardiomyocytes that results in congestive heart failure include hypertension, heart attacks, and coronary disease. Because the […]

Micro Platform for Controlled Cardiac Myocyte Differentiation

Congestive heart failure, the inability of the heart to continue to pump effectively due to damage of its muscle cells, affects approximately 4.8 million Americans and is a leading cause of mortality. Causes of the irreversible damage to the cardiomyocytes that results in congestive heart failure include hypertension, heart attacks, and coronary disease. Because the […]

Specification of Ventricular Myocyte and Pacemaker Lineages Utilizing Human Embryonic Stem Cells

Heart failure is a leading cause of mortality in California and the United States. Currently, there are no “cures” for heart failure.Other life threatening forms of heart disease include dysfunction of cardiac pacemaker cells, necessitating implantation of mechanical pacemakers. Although mechanical pacemakers can be efficacious, there are potential associated problems, including infection, limited battery half-life, […]

Discovering Potent Molecules with Human ESCs to Treat Heart Disease

This work is directly relevant to human embryonic stem cell (hESC) research because it brings new ideas about novel compounds to affect cardiomyogenesis. The work addresses an urgent need to develop new agents to treat cardiovascular disease. We will develop potent and selective drug-like molecules as cardiomyocyte differentiation agents. Heart disease is the leading cause […]

Autologous cardiac-derived cells for advanced ischemic cardiomyopathy

The adult human heart contains small numbers of cardiac stem cells that are able to partially repair the heart following a heart attack or throughout the course of progressive heart failure. We have developed a method to isolate these cells and grow them to large numbers in the lab. Isolation begins with a minimally-invasive biopsy […]

Human Cardiovascular Progenitors, their Niches and Control of Self-renewal and Cell Fate

For the millions of Americans who are born with or develop heart disease, stem cell research offers the first hope of reversing or repairing heart muscle damage. Thus, early reports suggesting heart regeneration after transplantation of adult bone marrow-derived stem cells were met with great excitement in both the scientific and lay community. However, although […]