Disease Focus: Neurological Disorders


MSC engineered to produce BDNF for the treatment of Huntington’s disease

One in every ten thousand people in the USA has Huntington’s disease, and it impacts many more. Multiple generations within a family can inherit the disease, resulting in escalating health care costs and draining family resources. This highly devastating and fatal disease touches all races and socioeconomic levels, and there are currently no cures. Screening […]

Stem Cells Secreting GDNF for the Treatment of ALS

This project aims to use a powerful combined stem cell and gene therapy approach to treat patients with amyotrophic lateral sclerosis (ALS or Lou Gehrig’s Disease). ALS is a devastating disease for which there is no treatment or cure. Progression from early muscle twitches to complete paralysis and death usually happens within 4 years. Every […]

Neuroprotection to treat Alzheimer’s: a new paradigm using human central nervous system cells

Alzheimer’s disease (AD) is an incurable disorder that affects memory, social interaction and the ability to perform everyday activities. In the USA alone, the number of AD patients aged 65 and older has surpassed 5 million and that number may triple by 2050. Annual health care costs have been estimated to exceed 172 billion dollars, […]

Neural Stem Cell-Based Therapy For Parkinson’s Disease

Ongoing degeneration of dopaminergic (DA) neurons in the midbrain is the hallmark of Parkinson’s disease (PD), a movement disorder that manifests with tremor, bradykinesia and rigidity. One million Americans live with PD and 60,000 are diagnosed with this disease each year. Although the cost is $25 billion per year in the United States alone, existing […]

hESC-derived NPCs Programmed with MEF2C for Cell Transplantation in Parkinson’s Disease

We proposes to use human embryonic stem cells (hESCs) differentiated into neural progenitor/stem cells (NPCs), but modified by transiently programming the cells with the transcription factor MEF2C to drive them more specifically towards dopaminergic (DA) neurons, representing the cells lost in Parkinson’s disease. We will select Parkinson’s patients that no longer respond to L-DOPA and […]

A CIRM Disease Team to Develop Allopregnanolone for Prevention and Treatment of Alzheimer’s Disease

Alzheimer’s disease (AD) is now a nation-wide epidemic and California is at the epicenter of the epidemic. One-tenth of all people in the United States diagnosed with AD live in California. In the US, 5.4 million people have AD and another American develops AD every 69 seconds. No therapeutic strategies exist to prevent or treat […]

Evaluation of Safety and Preliminary Efficacy of Escalating Doses of GRNOPC1 in Subacute Spinal Cord Injury

The proposed project is designed to assess the safety and preliminary activity of escalating doses of human embryonic stem cell (hESC) derived oligodendrocyte progenitor cells for treatment of spinal cord injury. Oligodendrocyte progenitor cells have two important functions: they produce neurotrophic factors which stimulate the survival and growth of neurons (nerve cells) after injury, and […]

Use of human iPS cells to study spinal muscular atrophy

Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders that cause infant mortality. SMA is caused by loss of the Survival of Motor Neuron (SMN) protein, resulting in motor neuron (MN) degeneration in the spinal cord. Although SMN protein plays diverse roles in RNA metabolism and is expressed in all cells, […]

Studying neurotransmission of normal and diseased human ES cell-derived neurons in vivo

Stem cells, including human embryonic stem cells, provide extraordinary new opportunities to model human diseases and may serve as platforms for drug screening and validation. Especially with the ever-improving effective and safe methodologies to produce genetically identical human induced pluripotent stem cells (iPSCs), increasing number of patient-specific iPSCs will be generated, which will enormously facilitate […]

Viral-host interactions affecting neural differentiation of human progenitors

Human cytomegalovirus (HCMV) is the major cause of birth defects, almost all of which are neuronal in origin. Approximately 1% of newborns are infected, and of the 13% that are symptomatic at birth, 50% will have severe permanent hearing deficits, vision loss, motor impairment, and mental retardation. At least 14% of asymptomatic infants also will […]