Disease Focus: Spinal Muscular Atrophy
Development of a Relevant Pre-Clinical Animal Model as a Tool to Evaluate Human Stem Cell-Derived Replacement Therapies for Motor Neuron Injuries and Degenerative Diseases
Motor neurons degenerate and die as a consequence of many conditions, including trauma to the spinal cord and its nerve roots and degenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Paralysis and in many cases death may result from a loss of motor neurons. No effective treatments are available for these patients. […]
In vitro modeling of human motor neuron disease
Motor neuron (MN) diseases such as spinal muscular atrophy and amyotrophic lateral sclerosis lead to progressive degeneration of MNs, presenting first with muscle weakness, followed by locomotor defects and frequently death due to respiratory failure. While progress has been made in identifying genes associated with MN degeneration, the molecular and cellular processes underlying disease onset […]
Use of human iPS cells to study spinal muscular atrophy
Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders that cause infant mortality. SMA is caused by loss of the Survival of Motor Neuron (SMN) protein, resulting in motor neuron (MN) degeneration in the spinal cord. Although SMN protein plays diverse roles in RNA metabolism and is expressed in all cells, […]
Use of iPS cells (iPSCs) to develop novels tools for the treatment of spinal muscular atrophy.
Spinal Muscular Atrophy (SMA) is one of the most common lethal genetic diseases in children. One in thirty five people carry a mutation in a gene called survival of motor neurons 1 (SMN1) which is responsible for this disease. If two carriers have children together they have a one in four chance of having a […]
New Drug Discovery for SMA using Patient-derived Induced Pluripotent Stem Cells
Spinal muscular atrophy (SMA) is the leading genetic cause of infant death in the U.S. This devastating disease affects 1 child in every 6,000-10,000 live births, with a North American prevalence of approximately 14,000 individuals. The disease is characterized by the death of spinal cord cells called motor neurons that connect the brain to muscle. […]
hESC-Derived Motor Neurons For the Treatment of Cervical Spinal Cord Injury
Cervical spinal cord injuries result in a loss of upper limb function because the cells within the spinal cord that control upper limb muscles are destroyed. The goal of this research program is to create a renewable human source of these cells, to restore upper limb function in both acute and chronic spinal cord injuries. […]
Gene regulatory mechanisms that control spinal neuron differentiation from hES cells.
More than 600 disorders afflict the nervous system. Common disorders such as stroke, epilepsy, Parkinson’s disease and autism are well-known. Many other neurological disorders are rare, known only to the patients and families affected, their doctors and scientists who look to rare disorders for clues to a general understanding of the brain as well as […]
Molecular Characterization of hESC and hIPSC-Derived Spinal Motor Neurons
One of the main objectives of stem cell biology is to create physiologically relevant cell types that can be used to either facilitate the study of or directly treat human disease. Tremendous progress towards these goals has been made in the area of motor neuron disease and spinal cord injury through the findings that motor […]
Disease in a Dish – Using Stem Cells to Model Huntington’s Disease and SMA
(Part 6 of 7) Bill Johnston, a Huntington’s disease patient advocate, and Virginia Mattis, a postdoctoral fellow at Cedar-Sinai Medical Center, spoke at “Synapses Firing: Connections Made”, a CIRM-hosted patient advocacy event. The 100+ people in attendance heard from patient advocates about living with neurodegenerative disease and from scientists about recent progress in stem cell […]