Human Stem Cell Use: Embryonic Stem Cell
Multiple Sclerosis therapy: Human Pluripotent Stem Cell-Derived Neural Progenitor Cells
Multiple Sclerosis (MS) is a disease of the central nervous system (CNS) caused by inflammation and loss of cells that produce myelin, which normally insulates and protects nerve cells. MS is a leading cause of neurological disability among young adults in North America. Current treatments for MS include drugs such as interferons and corticosteroids that […]
Human ES cell-derived MGE inhibitory interneuron transplantation for spinal cord injury
Transplantation of neuronal precursors into the central nervous system offers great promise for the treatment of neurological disorders including spinal cord injury (SCI). Among the most significant consequences of SCI are bladder spasticity and neuropathic pain, both of which likely result from a reduction in those spinal inhibitory mechanisms that are essential for normal bladder […]
Evaluation of Safety and Preliminary Efficacy of Escalating Doses of GRNOPC1 in Subacute Spinal Cord Injury
The proposed project is designed to assess the safety and preliminary activity of escalating doses of human embryonic stem cell (hESC) derived oligodendrocyte progenitor cells for treatment of spinal cord injury. Oligodendrocyte progenitor cells have two important functions: they produce neurotrophic factors which stimulate the survival and growth of neurons (nerve cells) after injury, and […]
Studying neurotransmission of normal and diseased human ES cell-derived neurons in vivo
Stem cells, including human embryonic stem cells, provide extraordinary new opportunities to model human diseases and may serve as platforms for drug screening and validation. Especially with the ever-improving effective and safe methodologies to produce genetically identical human induced pluripotent stem cells (iPSCs), increasing number of patient-specific iPSCs will be generated, which will enormously facilitate […]
Viral-host interactions affecting neural differentiation of human progenitors
Human cytomegalovirus (HCMV) is the major cause of birth defects, almost all of which are neuronal in origin. Approximately 1% of newborns are infected, and of the 13% that are symptomatic at birth, 50% will have severe permanent hearing deficits, vision loss, motor impairment, and mental retardation. At least 14% of asymptomatic infants also will […]
Correlated time-lapse imaging and single cell molecular analysis of human embryo development
We understand little about human development especially at the earliest stages. Yet human developmental biology is very important to stem cell biology and regenerative medicine for two reasons: 1) Understanding human developmental pathways especially of embryonic differentiation will inform our efforts to derive pluripotent stem cells and differentiate them to stable progenitors that are suitable […]
Molecular basis of human ES cell neurovascular differentiation and co-patterning
During human development, autonomic neurons align with and pattern alongside blood vessels. This patterning allows the autonomic nervous system to control the vascular function a phenomenon that is very useful during situations such as “fight or flight” responses where the blood vessels need to respond rapidly and involuntarily to stimuli. Since the alignment of blood […]
Phenotypic Analysis of Human ES Cell-Derived Muscle Stem Cells
We study human muscle development, and are actively investigating potential cell-based therapies for the treatment of degenerative muscle diseases, such as muscle dystrophy. This project will define the pathway that muscle stem cells follow as they form new muscle, and identify which muscle stem cells are most useful for therapy. Our approach will be to […]
Neural and general splicing factors control self-renewal, neural survival and differentiation
Human embryonic and patient-specific induced pluripotent stem cells have the remarkable capacity to differentiate into many cell-types, including neurons, thus enabling the modeling of human neurological diseases in vitro, and permit the screening of molecules to correct diseases. Maintaining the pluripotent state of the stem cell, directing the stem cell towards a neuronal lineage, keeping […]
Genomic instability during culturing of human embryonic stem cells
Human embryonic stem cells (hESCs) have important potential in the treatment of human disease. Because they can change into a large number of different cell types, they may be useful in restoring a variety of damaged tissues. One potentially harmful side effect of hESC therapy is cancer due to unregulated growth of the hESCs introduced […]