Human Stem Cell Use: iPS Cell
Human Stem-Cell Based Development of a Potent Alzheimer’s Drug Candidate
Over 6 million people in the US suffer from Alzheimer’s disease (AD). There are no drugs that prevent the death of nerve cells in AD, nor has any drug been identified that can stimulate nerve cell replacement in aged human brain. Importantly, even if nerve cells could be replaced, the toxic environment of the AD […]
Injectable Hydrogels for the Delivery, Maturation, and Engraftment of Clinically Relevant Numbers of Human Induced Pluripotent Stem Cell-Derived Neural Progenitors to the Central Nervous System
One critical bottleneck in the translation of regenerative medicine into the clinic is the efficient delivery and engraftment of transplanted cells. While direct injection is the least invasive method for cell delivery, it commonly results in the survival of only 5-20% of cells. Studies suggest that delivery within a carrier gel may enhance cell viability, […]
Technologies to improve in vivo function of transplanted stem cells
Stem cell-based therapy is recognized as a promising therapeutic approach for treating various diseases that are currently intractable. One strategy in regenerative medicine is to transplant stem cells or their differentiated derivatives to regenerate the damaged tissues or halt tissue degeneration. Human embryonic stem cells and human induced pluripotent stem cells having the potential to […]
Development of 3D Bioprinting Techniques using Human Embryonic Stem Cells Derived Cardiomyocytes for Cardiac Tissue Engineering
Heart, stroke and other cardiovascular diseases are responsible for ~17 million deaths per year globally and this number is predicted to reach 23.3 million by 2030. Cardiovascular diseases impose a staggering annual cost of $300 billion on the U.S. health care system. Heart transplantation is the ultimate solution to end-stage heart failure. However, a major […]
Engineered Biomaterials for Scalable Manufacturing and High Viability Implantation of hPSC-Derived Cells to Treat Neurodegenerative Disease
Cell replacement therapies (CRTs) have considerable promise for addressing unmet medical needs, including incurable neurodegerative diseases. However, several bottlenecks hinder CRTs, especially the needs for improved cell manufacturing processes and enhanced cell survival and integration after implantation. Engineering synthetic biomaterials that present biological signals to support cell expansion, differentiation, survival, and/or integration may help overcome […]
Macaca mulatta as advanced model for predictive preclinical testing of engineered cardiac autografts and allografts
Heart disease is the number one cause of death in the US. Heart muscle injured during a heart attack does not regenerate, and the resulting damage leads to heart failure, which inflicts almost 6 million people in the US alone. Recently, several studies have shown that direct injection of stem cell-derived heart cells may offer […]
A Chromatin Context Tool for Predicting iPS Lineage Predisposition and Tissue Graftability
Induced pluripotent stem (iPS) cells are cells derived from skin that closely resemble embryonic stem (ES) cells and can be coaxed into many different types of cells such as nerve cells, heart cells, liver cells, and also back to skin cells. One major bottleneck in the field is our ability to coax the cells into […]
A small molecule tool for reducing the malignant potential in reprogramming human iPSCs and ESCs
This research project aims to solve a key bottleneck in the use of differentiated human embryonic stem cells and induced pluripotent stem cells for the regeneration and replacement of diseased or damaged tissues. This bottleneck is the potential of unintended transplants containing failed-to-differentiate stem cells developing into benign growths called teratomas, or worse, malignant teratocarcinomas. […]
Development of a clinical-grade extracorporeal liver support system using human induced pluripotent stem cell-derived hepatic cells
Liver failure is the fourth leading cause of adult death in California. Because liver cells can regenerate, some patients with liver failure could be saved without having to undergo organ transplantation if their liver function could be supported temporarily. Here, we propose to develop a device to support these patients called the “extracorporeal liver support […]
User-friendly predictive molecular diagnostic assays for quality control of stem cell derivatives for transplantation and drug discovery
Three years ago, with help from CIRM funding, we developed an assay. This is a genomics-base diagnostic assay, similar to those now used for diagnosing cancers; but in our case, it is designed to analyze human ES and iPS cells. The assay is very simple to use; researchers use microarrays to profile the genes that […]