Human Stem Cell Use: iPS Cell


Engineered Biomaterials for Scalable Manufacturing and High Viability Implantation of hPSC-Derived Cells to Treat Neurodegenerative Disease

Cell replacement therapies (CRTs) have considerable promise for addressing unmet medical needs, including incurable neurodegerative diseases. However, several bottlenecks hinder CRTs, especially the needs for improved cell manufacturing processes and enhanced cell survival and integration after implantation. Engineering synthetic biomaterials that present biological signals to support cell expansion, differentiation, survival, and/or integration may help overcome […]

Macaca mulatta as advanced model for predictive preclinical testing of engineered cardiac autografts and allografts

Heart disease is the number one cause of death in the US. Heart muscle injured during a heart attack does not regenerate, and the resulting damage leads to heart failure, which inflicts almost 6 million people in the US alone. Recently, several studies have shown that direct injection of stem cell-derived heart cells may offer […]

A Chromatin Context Tool for Predicting iPS Lineage Predisposition and Tissue Graftability

Induced pluripotent stem (iPS) cells are cells derived from skin that closely resemble embryonic stem (ES) cells and can be coaxed into many different types of cells such as nerve cells, heart cells, liver cells, and also back to skin cells. One major bottleneck in the field is our ability to coax the cells into […]

A small molecule tool for reducing the malignant potential in reprogramming human iPSCs and ESCs

This research project aims to solve a key bottleneck in the use of differentiated human embryonic stem cells and induced pluripotent stem cells for the regeneration and replacement of diseased or damaged tissues. This bottleneck is the potential of unintended transplants containing failed-to-differentiate stem cells developing into benign growths called teratomas, or worse, malignant teratocarcinomas. […]

Development of a clinical-grade extracorporeal liver support system using human induced pluripotent stem cell-derived hepatic cells

Liver failure is the fourth leading cause of adult death in California. Because liver cells can regenerate, some patients with liver failure could be saved without having to undergo organ transplantation if their liver function could be supported temporarily. Here, we propose to develop a device to support these patients called the “extracorporeal liver support […]

User-friendly predictive molecular diagnostic assays for quality control of stem cell derivatives for transplantation and drug discovery

Three years ago, with help from CIRM funding, we developed an assay. This is a genomics-base diagnostic assay, similar to those now used for diagnosing cancers; but in our case, it is designed to analyze human ES and iPS cells. The assay is very simple to use; researchers use microarrays to profile the genes that […]

Center of Excellence for Stem Cell Genomics – Stanford

The Center of Excellence in Stem Cell Genomics will bring together investigators from seven major California research institutions to bridge two fields – genomics and pluripotent stem cell research. The projects will combine the strengths of the center team members, each of whom is a leader in one or both fields. The program directors have […]

In vitro modeling of human motor neuron disease

Motor neuron (MN) diseases such as spinal muscular atrophy and amyotrophic lateral sclerosis lead to progressive degeneration of MNs, presenting first with muscle weakness, followed by locomotor defects and frequently death due to respiratory failure. While progress has been made in identifying genes associated with MN degeneration, the molecular and cellular processes underlying disease onset […]

Directed Differentiation of Specialized Endothelial Cells

Vascular endothelial cells (EC) or endothelial progenitor cells (EPC) derived from stem cells could potentially lead to a variety of clinically relevant therapeutic applications, including various strategies for treating heart and vascular diseases. However, because EC exhibit a variety of functionally distinct subphenotypes, it is important to be able to generate the appropriate endothelial type. […]

Metabolically-driven epigenetic changes in iPSC reprogramming

Generation of induced pluripotent stem cells (iPSCs) from somatic cells through cellular reprogramming offers tremendous potential for therapeutics, the study of disease states, and elucidation of developmental processes. Central to the process of generating a pluripotent cell from a somatic cell is an energy-dependent epigenetic reconfiguration event that must occur to produce iPSCs with characteristics […]