Human Stem Cell Use: iPS Cell
WNT signaling and the control of cell fate decisions in human pluripotent stem cells.
With their ability to develop into virtually all mature cell types, human pluripotent stem cells (hPSC) represent a unique and powerful research tool to study the fundamental mechanisms regulating human development. In addition, hPSC provide the “raw material” for the development of cell-based therapies of presently incurable diseases, such as cancer, cardiovascular disease, and neurodegenerative […]
Mitochondrial Metabolism in hESC and hiPSC Differentiation, Reprogramming, and Cancer
Stem cell quality and safety in developing regenerative medicine therapies is of utmost importance. Poor outcomes include inadequate functionality, exhaustion, immune rejection, cancer development, and others. Recent studies strongly support our core hypothesis that mitochondrial function determines stem cell quality and safety. Dysfunctional mitochondria foster cancer, diabetes, obesity, neurodegeneration, immunodeficiency, and cardiomyopathy. Unlike whole genome […]
The stem cell microenvironment in the maintenance of pluripotency and reprogramming
Pluripotent stem cell research is just on the verge of beginning to fulfill its promise to revolutionize medicine. Whether they are derived from embryos, or from adult cells that have been reprogrammed, human pluripotent stem cells can be propagated indefinitely in the laboratory and can turn into a wide range of mature cell types, providing […]
Molecular Characterization of hESC and hIPSC-Derived Spinal Motor Neurons
One of the main objectives of stem cell biology is to create physiologically relevant cell types that can be used to either facilitate the study of or directly treat human disease. Tremendous progress towards these goals has been made in the area of motor neuron disease and spinal cord injury through the findings that motor […]
Defining the molecular mechanisms of somatic cell reprogramming
The development of methods to “reprogram” adult cells such as skin cells by simultaneously expressing four specific factors — Oct3/4, Sox2, c-Myc and Klf4 — in order to create cells resembling embryonic stem (ES) cells is a major breakthrough in stem cell biology. Our ability to generate these cells, which are known as induced pluripotent […]
Molecular Mechanisms of Reprogramming towards Pluripotency
Stem cell biology and its applications to cell-based therapies, since its inception 30 years ago, has been hindered by the immunological considerations of rejection of non-autologous cells in patients, as well as by ethical concerns. The generation of pluripotent cells from a patient’s own somatic cells has therefore been the holy grail of regenerative medicine. […]
Deep phenotyping of human brain organoid models of autism spectrum disorder to unravel disease heterogeneity and develop biomarkers and treatments
Research Objective We will uncover pathways through which ASD mutations cause disease and close the gap from disease research to therapeutic testing using organoids, primary human neurons, machine learning and AAVs. Impact Our studies are impactful because outcomes will lead to therapeutic avenues to pursue for ASD treatment. 1 in 22 children in California is […]
A Center for Stem Cell Disease Modeling and Therapeutics
The goal of this project is to support the discovery and evaluation of novel therapeutics using stem cell-based models and drug and CRISPR screening. The facility will provide California researchers access to tools, technologies, and resources for regenerative medicine research. This project benefits California by helping accelerate research to find cures for major diseases of […]
CIRM ASCEND Center – Advancing Stem Cell Education and Novel Discoveries
The proposed CIRM ASCEND Center provides cutting-edge organoid-based services, offering consultation, optimized protocols, and genomic analysis. We also offer comprehensive training, workshops, and access to data, empowering researchers across California to excel in stem cell and organoid research. Our CIRM ASCEND Center benefits Californians by advancing regenerative medicine and healthcare. The Center’s services and training […]
A modular automation approach to stem cell modeling to increase throughput, reproducibility and access
This project enhances stem cell access, scalability, and collaboration. It offers characterized hPSC lines, CRISPR editing, and differentiation on automated platforms accelerating progress in biology, disease research, and regenerative medicine. The project benefits California by advancing regenerative medicine through diverse hPSC lines, potentially leading to novel treatments and addressing health disparities. It offers educational opportunities […]