Human Stem Cell Use: iPS Cell


New Technology for the Derivation of Human Pluripotent Stem Cell Lines for Clinical Use

Since their discovery almost ten years ago, there has been steady progress towards the application of human embryonic stem (ES) cells in medicine. Now, the field is on the threshold of a new era. Recent results from several laboratories show that human skin cells can be converted to cells resembling ES cells through simple genetic […]

Derivation and analysis of pluripotent stem cell lines with inherited TGF-b mediated disorders from donated IVF embryos and reprogrammed adult skin fibroblasts

The field of regenerative medicine revolves around the capacity of a subset of cells, called stem cells, to become the mature tissues of the adult human body. By studying stem cells, we hope to develop methods and reagents for treating disease. For instance, we hope to develop methods for making stem cells become cardiovascular cells […]

Derivation of New ICM-stage hESCs

Recent studies in the derivation of rodent pluripotent epiblast stem cells and their molecular characterizations have provided strong evidence that the conventional human embryonic stem cells may represent a distinct, later developmental stage, i.e. late epiblast stage, than the conventional murine embryonic stem cells, which is a “capture” of the ICM stage. Those two stages […]

Derivation of New ICM-stage hESCs

Recent studies in the derivation of rodent pluripotent epiblast stem cells and their molecular characterizations have provided strong evidence that the conventional human embryonic stem cells may represent a distinct, later developmental stage, i.e. late epiblast stage, than the conventional murine embryonic stem cells, which is a “capture” of the ICM stage. Those two stages […]

Induced Pluripotent Stem Cells for Cardiovascular Diagnostics

Our objective is to use induced pluripotent stem (iPS) cell technology to produce a cell-based test for long QT syndrome (LQTS), a major form of sudden cardiac death. Nearly 500,000 people in the US die of sudden cardiac death each year. LQTS can be triggered by drug exposure or stresses. Drug-induced LQTS is the single […]

Safe, efficient creation of human induced pluripotent stem cells without the use of retroviruses

Embryonic stem cells open up exciting new prospects for medicine, because they can differentiate into any tissue in the body. Therefore, they have the potential to be used to repair faulty tissues in diseases like diabetes, heart disease, and neural disorders. Furthermore, stem cells can be corrected by gene therapy and transplanted, in order to […]

Somatic cell age and memory in the generation of iPS cells

Pluripotent stem cells can give rise to any cell type of the body and hold enormous promise for regenerative medicine. Pluripotent stem cells, such as embryonic stem (ES) cells, are derived from very young human embryos. It is of great interest to derive pluripotent stem cells from adult cells. In this way, one could potentially […]

Induction of pluripotent stem cells by small RNA-guided transcriptional activation

Embryonic stem cells have great potential in therapeutic use to replace diseased or damaged tissues because they have the unique capability of giving rise to any cell type of the body while perpetuating their own identity, even after repeated cell divisions. Recent advances in this area have resulted in a new way to generate stem […]

Establishment of Frontotemporal Dementia Patient-Specific Induced Pluripotent Stem (iPS) Cell Lines with Defined Genetic Mutations

We propose to generate induced pluripotent stem (iPS) cells from skin cells derived from human subjects with frontotemporal dementia (FTD). FTD accounts for 15–20% of all dementia cases and, with newly identified genetic causes, is now recognized as the most common dementia in patients under 65 years of age. FTD patients suffer progressive neurodegeneration in […]

Development of Induced Pluripotent Stem Cells for Modeling Human Disease

Human embryonic stem cells (hESC) hold great promise in regenerative medicine and cell replacement therapies because of their unique ability to self-renew and their developmental potential to form all cell lineages in the body. Traditional techniques for generating hESC rely on surplus IVF embryos and are incompatible with the generation of genetically diverse, patient or […]