Stem cell models to analyze the role of mutated C9ORF72 in neurodegeneration
Grant Award Details
Grant Type:
Grant Number:
RB4-06045
Investigator(s):
Disease Focus:
Human Stem Cell Use:
Cell Line Generation:
Award Value:
$1,260,360
Status:
Closed
Progress Reports
Reporting Period:
Year 1
Reporting Period:
Year 2
Reporting Period:
Year 3
Grant Application Details
Application Title:
Stem cell models to analyze the role of mutated C9ORF72 in neurodegeneration
Public Abstract:
Amyotrophic lateral sclerosis (ALS) is an idiopathic adult-onset degenerative disease characterized by progressive weakness from loss of upper and lower motor neurons. Onset is insidious, progression is essentially linear, and death occurs within 3-5 years in 90% of patients. In the US, 5,000 deaths occur per year and in the world, 100,000. In October, 2011, the causative gene defect in a long sought after locus on chromosome 9 for ALS, frontotemporal dementia (FTD) and overlap ALS-FTD was identified to be a expansion of a hexanucleotide repeat in the uncharacterized C9ORF72 gene. The goal of the proposed research is to generate human stem cell models from cells derived from ALS patients with the C9ORF72 expanded repeats and relevant control cells using genome-editing technology. We will also generate a stem cell model expressing the repeat independent of the C9ORF72 gene to study if the repeat alone is causing neural defects. Using advanced genome technologies, biochemical and cellular approaches, we will study the molecular pathways affected in motor neurons derived from these stem cell models. Finally, we will use innovative technologies to rescue the abnormal phenotypes that arise from the expanded repeat in human motor neurons. Completion of the proposed research is expected to transform our understanding of the regulatory and pathogenetic mechanisms underlying ALS and FTD, and establish therapeutic options for these debilitating diseases.
Statement of Benefit to California:
Our research provides the foundation for decoding the mechanisms that underlie the single most frequent genetic mutation found to contribute to both ALS and FTD, debilitating neurological diseases that impact many Californians. In California, the expected prevalence of ALS (the number of total existing cases) is 2,200 to 3,000 cases at any one time, and the incidence is 750-1,100 new cases each year. The number of FTD cases is five times as many. Our research has and will continue to serve as a basis for understanding deviations from normal and disease patient neuronal cells, enabling us to make inroards to understanding neurological disease modeling using neurons differentiated from reprogammed patient-specific lines. Such disease modeling will have great potential for California health care patients, pharmaceutical and biotechnology industries in terms of improved human models for drug discovery and toxicology testing. Our improved knowledge base will support our efforts as well as other Californian researchers to study stem cell models of neurological disease and design new diagnostics and treatments, thereby maintaining California's position as a leader in clinical research.
Publications
- Annu Rev Biochem (2015): The Clothes Make the mRNA: Past and Present Trends in mRNP Fashion. (PubMed: 25784054)
- Nat Commun (2016): Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. (PubMed: 27378374)
- Cell Rep (2016): Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. (PubMed: 27068461)
- Cell (2016): Programmable RNA Tracking in Live Cells with CRISPR/Cas9. (PubMed: 26997482)
- Neuron (2016): Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System. (PubMed: 27773581)
- Trends Neurosci (2015): RNA-binding proteins in neurodegeneration: Seq and you shall receive. (PubMed: 25765321)