Synthetic Matrices for Stem Cell Growth and Differentiation
Grant Award Details
Grant Type:
Grant Number:
RT1-01053
Investigator(s):
Human Stem Cell Use:
Award Value:
$599,404
Status:
Closed
Progress Reports
Reporting Period:
Year 1
Reporting Period:
Year 2
Reporting Period:
NCE
Grant Application Details
Application Title:
Synthetic Matrices for Stem Cell Growth and Differentiation
Public Abstract:
There is a critical need for new technologies to facilitate growth and differentiation of human embryonic stem cells (hESC) using clinically acceptable, animal-free reagents. In particular, most currently used culture conditions are not acceptable for standardized production of clinical grade cell products. We propose to develop novel, well-defined, synthetic extracellular matrices for growth and differentiation of hESC.
Our approach is to first understand how hESC interact with extracellular matrix materials by analyzing candidate adhesive substrate proteins and integrin receptors that mediate attachment, survival, proliferation and differentiation. Biomimetic, synthetic matrices will be developed, with components and strategies informed by our knowledge of fundamental cell biology. We have established an active, interdisciplinary collaboration between experts in cell biology, stem cell culture, peptide chemistry and materials research.
Preliminary data have identified crucial receptors that mediate adhesion and survival of hESC. As proof of concept, novel, biocompatible hydrogel polymers have been developed and analyzed for physical properties, cellular toxicity, and for their ability to support adhesion and growth of hESC. A method for rapid, high throughput screening of candidate hydrogel peptides has been developed using inkjet printing technology.
We propose to develop and test peptide-hydrogels for culture of hESC. Peptides from adhesive extracellular matrix proteins will be screened for their ability to support adhesion, survival, proliferation and differentiation of several hESC lines, including some that are not federally approved. Arrays of candidate materials, using single peptides and combinations of peptides will be arrayed using ink jet printing and assayed in adhesion assays. Larger scale experiments will test adhesive substrates for survival, proliferation, and maintenance of the undifferentiated state.
The proposed experiments, if successful, will address an important unmet need in bringing stem cell therapies to the clinic and provide the foundation for a wide range of fundamental studies.
Our approach is to first understand how hESC interact with extracellular matrix materials by analyzing candidate adhesive substrate proteins and integrin receptors that mediate attachment, survival, proliferation and differentiation. Biomimetic, synthetic matrices will be developed, with components and strategies informed by our knowledge of fundamental cell biology. We have established an active, interdisciplinary collaboration between experts in cell biology, stem cell culture, peptide chemistry and materials research.
Preliminary data have identified crucial receptors that mediate adhesion and survival of hESC. As proof of concept, novel, biocompatible hydrogel polymers have been developed and analyzed for physical properties, cellular toxicity, and for their ability to support adhesion and growth of hESC. A method for rapid, high throughput screening of candidate hydrogel peptides has been developed using inkjet printing technology.
We propose to develop and test peptide-hydrogels for culture of hESC. Peptides from adhesive extracellular matrix proteins will be screened for their ability to support adhesion, survival, proliferation and differentiation of several hESC lines, including some that are not federally approved. Arrays of candidate materials, using single peptides and combinations of peptides will be arrayed using ink jet printing and assayed in adhesion assays. Larger scale experiments will test adhesive substrates for survival, proliferation, and maintenance of the undifferentiated state.
The proposed experiments, if successful, will address an important unmet need in bringing stem cell therapies to the clinic and provide the foundation for a wide range of fundamental studies.
Statement of Benefit to California:
The State of California, like the rest of the nation, faces immense challenges to its health care system, with soaring medical costs due in part to continuing care of our aging population. The percentage of elderly in California is expected to grow from what was 14 percent in 1990 to 22 percent in 2030. Chronic degenerative diseases such as Alzheimer’s disease, Parkinson’s disease, age-related macular degeneration, cancer, diabetes, cardiovascular disease, osteoarthritis, and osteoporosis afflict a growing number of individuals in California. Major innovative approaches are now, more than ever, an imperative.
Human embryonic stem cells (hESC) have great potential for the treatment of disease and injury because they are pluripotent in their capability to form most cell types in the body. They will also be of great utility for screening new drug candidates, and for understanding the molecular mechanisms of human development and disease. However, methods used to grow hESC are in their infancy, and scale up for production of clinical grade cells will require further research.
Our proposed research will develop new methods for culture of hESC using synthetic matrices that will be suitable for clinical applications. If successful, this work will be a great benefit to the state by providing useful new technology that addresses a critical need in the field of stem cell research. In addition, it provide new approaches for therapies to treat degenerative conditions that afflict millions of Californians.
Publications
- Invest Ophthalmol Vis Sci (2015): Canonical/beta-catenin Wnt pathway activation improves retinal pigmented epithelium derivation from human embryonic stem cells. (PubMed: 25604686)
- Stem Cells (2015): Concise Review: Making Stem Cells Retinal: Methods for Deriving Retinal Pigment Epithelium and Implications for Patients With Ocular Disease. (PubMed: 25809736)
- Stem Cells Transl Med (2015): Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate. (PubMed: 25593208)
- Stem Cells (2009): Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. (PubMed: 19658190)
- Cell Stem Cell (2015): Humanized Mice Reveal Differential Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells. (PubMed: 26299572)
- Biomaterials (2015): Light-activated RNA interference in human embryonic stem cells. (PubMed: 26086448)
- Stem Cells (2010): Memory in Induced Pluripotent Stem Cells: Reprogrammed Human Retinal Pigmented Epithelial Cells Show Tendency for Spontaneous Redifferentiation. (PubMed: 20882530)
- Cell Stem Cell (2010): MicroRNA profiling reveals two distinct p53-related human pluripotent stem cell states. (PubMed: 21112562)
- PLoS One (2009): Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. (PubMed: 19997644)
- Stem Cells Dev (2010): Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. (PubMed: 19811096)
- J Biotechnol (2010): Synthetic surfaces for human embryonic stem cell culture. (PubMed: 20132848)
- Nat Chem (2010): A versatile approach to high-throughput microarrays using thiol-ene chemistry. (PubMed: 21124405)