Systems-level discovery of the regulatory mechanisms directing differentiation of hESC
Grant Award Details
Grant Type:
Grant Number:
RB5-07012
Investigator(s):
Human Stem Cell Use:
Award Value:
$1,161,000
Status:
Closed
Progress Reports
Reporting Period:
Year 1
Reporting Period:
Year 2
Reporting Period:
Year 3/NCE
Grant Application Details
Application Title:
Systems-level discovery of the regulatory mechanisms directing differentiation of hESC
Public Abstract:
Human embryonic stem cells (hESCs) are capable of unlimited reproduction and retain the ability to differentiate into all cell types in the human body. Therefore, hESCs hold great promise for human cell and tissue replacement therapy. However, our knowledge on how to differentiate them into desired cell types for therapy remains limited. The overall goal of this proposal is to address this lack of knowledge to improve the feasibility of large production of hESCs and routine derivation of therapeutically valuable cells from hESCs. We propose to establish a systems biology approach, which will be continuously optimized with our experimental data, to provide intelligent guidance on how to differentiate hESCs into various cell lineages for therapy. The combination of the proposed bioinformatics and experimental approaches will provide a unique opportunity to address the needs for hESC-based replacement therapy.
Statement of Benefit to California:
Human embryonic stem cells (hESCs) are capable of unlimited self-renewal and retain the ability to differentiate into all cell types in the human body. Therefore, hESCs hold great promise for human cell and tissue replacement therapy. However, due to our limited knowledge of the mechanism underlying the self-renewal and lineage-specific differentiation, it becomes increasingly urgent that more effort must be made to address these knowledge bottlenecks. Our overall goal is to establish a systems biology approach to provide intelligent guidance for our experimental effort to elucidate the mechanisms underlying the lineage-specific differentiation. Achieving this goal will significantly improve our capacity for reliable differentiation of these cells into therapeutically useful cell types. Therefore, the proposed research will benefit California citizens by contributing to the eventual realization of the therapeutic potential of hESCs.
Publications
- Nat Commun (2016): Constructing 3D interaction maps from 1D epigenomes. (PubMed: 26960733)
- Nat Methods (2015): Predicting the human epigenome from DNA motifs. (PubMed: 25240437)