Stage of Program: Basic or Applied Basic Research (DISC1 and many 1.0 Projects)


Long noncoding RNAs for pluripotency and cell fate commitment

The human body is composed of thousands of cell types, which all came originally from embryonic stem cells. Although all these cell types have the same genetic blueprint, different genes are active in different cells to give each its distinctiveness. The process by which the genes remember whether they are in liver, brain, or skin […]

Role of the NMD RNA Decay Pathway in Maintaining the Stem-Like State

A subset of intellectual disability cases in humans are caused by mutations in an X-linked gene essential for a quality control mechanism called nonsense-mediated RNA decay (NMD). Patients with mutations in this gene—UPF3B—commonly have not only ID, but also schizophrenia, autism, and attention-deficit/hyperactivity disorder. Thus, the study of UPF3B and NMD may provide insight into […]

Studying Arrhythmogenic Right Ventricular Dysplasia with patient-specific iPS cells

Most heart conditions leading to sudden death or impaired pumping heart functions in the young people (

Mechanisms to protect hESC-derived cells from allogenic immune rejection

The potential of human embryonic stem cells (hESC) to differentiate into a tremendous range of biologically active cells/tissues is the basis for many novel therapeutic strategies. However, immune-mediated rejection of hESC-derived tissues by the patient remains a significant barrier to the promise of regenerative therapies. Therefore, it is key to develop strategies to induce immunological […]

Modeling Alexander disease using patient-specific induced pluripotent stem cells

Alexander disease (AxD) is a devastating childhood disease that affects neural development and causes mental retardation, seizures and spasticity. The most common form of AxD occurs during the first two years of life and AxD children show delayed mental and physical development, and die by the age of six. AxD occurs in diverse ethnic, racial, […]

Mechanism of heart regeneration by cardiosphere-derived cells

In the process of a heart attack, clots form suddenly on top of cholesterol-laden plaques, blocking blood flow to heart muscle. As a result, living heart tissue dies and is replaced by scar. The larger the scar, the higher the chance of premature death and disability following the heart attack. While conventional treatments aim to […]

Deciphering transcriptional control of pancreatic beta-cell maturation in vitro

The loss of pancreatic beta-cells in type 1 diabetes results in absence of insulin secreted by the pancreas, and consequently elevated blood sugar which leads to various long-term complications. Diabetic patients would benefit tremendously from availability of transplantable replacement beta-cells. Much of current research focuses on producing beta-cells from stem cells. Despite some progress, it […]

DECIPHERING THE INSTRUCTIONS FOR VERTEBRATE HSC SPECIFICATION AND AMPLIFICATION.

Hematopoietic stem cells (HSCs) are an important population of cells that continuously produce and replace blood and immune cells over the course of our lifetimes. These rare, self-renewing cells are the key element of bone marrow transplants, which are used to treat a variety of conditions including many forms of leukemia and solid tumors. Understanding […]

Transcriptional regulation of pluripotency in human embryonic stem cells

All of the diverse cells in the human body contain the same genetic information, and originally arose from a single cell, a fertilized egg. Embryogenesis is a result of cell division followed by differential gene expression, to selectively activate only the genes needed for development of each specialized cell type. By understanding the multiple gene […]

Understanding the status of the X chromosomes in human ESCs and preimplantation embryos

Human embryonic stem cells (hESCs) are able to divide indefinitely and under the proper conditions, can essentially become any cell in the human body. They are derived from the developing human embryo and carry great promise for regenerative medicine. However, these cells demonstrate an instability surrounding the state of the X chromosome. Male (XY) cells […]