Stage of Program: Basic or Applied Basic Research (DISC1 and many 1.0 Projects)


Derivation of New ICM-stage hESCs

Recent studies in the derivation of rodent pluripotent epiblast stem cells and their molecular characterizations have provided strong evidence that the conventional human embryonic stem cells may represent a distinct, later developmental stage, i.e. late epiblast stage, than the conventional murine embryonic stem cells, which is a “capture” of the ICM stage. Those two stages […]

Derivation of New ICM-stage hESCs

Recent studies in the derivation of rodent pluripotent epiblast stem cells and their molecular characterizations have provided strong evidence that the conventional human embryonic stem cells may represent a distinct, later developmental stage, i.e. late epiblast stage, than the conventional murine embryonic stem cells, which is a “capture” of the ICM stage. Those two stages […]

Somatic cell age and memory in the generation of iPS cells

Pluripotent stem cells can give rise to any cell type of the body and hold enormous promise for regenerative medicine. Pluripotent stem cells, such as embryonic stem (ES) cells, are derived from very young human embryos. It is of great interest to derive pluripotent stem cells from adult cells. In this way, one could potentially […]

Establishment of Frontotemporal Dementia Patient-Specific Induced Pluripotent Stem (iPS) Cell Lines with Defined Genetic Mutations

We propose to generate induced pluripotent stem (iPS) cells from skin cells derived from human subjects with frontotemporal dementia (FTD). FTD accounts for 15–20% of all dementia cases and, with newly identified genetic causes, is now recognized as the most common dementia in patients under 65 years of age. FTD patients suffer progressive neurodegeneration in […]

Development of Induced Pluripotent Stem Cells for Modeling Human Disease

Human embryonic stem cells (hESC) hold great promise in regenerative medicine and cell replacement therapies because of their unique ability to self-renew and their developmental potential to form all cell lineages in the body. Traditional techniques for generating hESC rely on surplus IVF embryos and are incompatible with the generation of genetically diverse, patient or […]

New Cell Lines for Huntington’s Disease

Huntington’s disease (HD) is a devastating neurodegenerative disease with a 1/10,000 disease risk that always leads to death. These numbers do not fully reflect the large societal and familial cost of HD, which requires extensive caregiving and has a 50% chance of passing the mutation to the next generation. Current treatments treat some symptoms but […]

Understanding hESC-based Hematopoiesis for Therapeutic Benefit

Hematopoietic stem cell transplantation is the treatment of choice for many hematologic malignancies, and it is used to treat an expanding number of congenital blood disorders. However, only ~30% of patients who can benefit from this treatment have a matched sibling that can serve as the ideal donor. While the national marrow donor program and […]

Mechanisms to maintain the self-renewal and genetic stability of human embryonic stem cells

Human embryonic stem cells (hESCs) are capable of unlimited self-renewal, a process to reproduce self, and retain the ability to differentiate into all cell types in the body. Therefore, hESCs hold great promise for human cell and tissue replacement therapy. Because DNA damage occurs during normal cellular proliferation and can cause DNA mutations leading to […]

Generation of inner ear sensory cells from human ES cells toward a cure for deafness

Hearing loss is the leading birth defect in the United States with ~3 children in 1,000 born with partial to profound compromise of auditory function. Debilitating hearing loss is estimated to affect ~4% of people under 45 years of age, and 34% of those 65 years or over. A major cause of why acquired hearing […]

Improved hES Cell Growth and Differentiation

Human embryonic stem (hES) cells are pluripotent stem cells that can theoretically give rise to every cell type in the human body. Consequently, hES cells have enormous promise for the treatment of human disease. Specialized cell types derived from hES cells could be used to treat a wide variety of diseases and disorders including spinal […]