Stage of Program: Basic or Applied Basic Research (DISC1 and many 1.0 Projects)


The molecular basis underlying adult neurogenesis during regeneration and tissue renewal

Regeneration of lost body parts has long fascinated humans, yet regeneration remains one of the great mysteries in biology. Forty years ago, studies on the mammalian brain provided evidence that new neurons are generated throughout life. It is now widely accepted that neurons are born (neurogenesis) in a wide range of animals, including humans, from […]

Mechanisms Underlying the Diverse Functions of STAT3 in Embryonic Stem Cell Fate Regulation

Embryonic stem cells (ESCs) are derived from very early stage embryos. ESCs can be maintained in culture indefinitely while retain the ability to make any type of cell in the body. These properties make ESCs a very powerful tool to address basic biology questions. ESCs also offer an important renewable resource for future cell replacement […]

Regulation of Adult Stem Cell Proliferation by RAS and Cell-Permeable Proteins

Our research focuses on developing new tools and models for the next generation of doctors and scientists in all specialties of regenerative medicine. The major obstacles in regenerative medicine are the limited number of pre-existing stem cells and the inability to regulate their proliferation. Our aim is to identify the mechanisms that regulate adult stem […]

A Novel Microenvironment-Mediated Functional Skeletal Muscle from Human Embryonic Stem Cells and their In Vivo Engraftment

Muscle wasting is a serious clinical problem associated with a number of diseases and health conditions, affecting individuals of all ages. Muscular dystrophy (MD) is a form of muscle wasting disease resulting from genetic mutations. Duchenne muscular dystrophy (DMD) is the most common form of MD that limits motility and life expectancy of children. It […]

Molecular dissection of adult liver regeneration to guide the generation of hepatocytes from pluripotent stem cells

The liver is a promising target for cell therapy since it supports and functionally integrates transplanted cells. Human liver contains more than 50 billion cells and more than 10% replacement will be required for most liver diseases. Hence, embryonic stem cells (ESC), which have unlimited growth capacities, represent one of the few cell types with […]

Molecular Mechanisms of Trophoblast Stem Cell Specification and Self-Renewal

Prematurity/preterm birth is the leading cause of neonatal death in the U.S. and in California. During an average day in California, 149 babies are born preterm. These babies are at increased risk for long-term disabilities, including cerebral palsy, gastrointestinal problems, and vision and hearing loss. Many premature babies also suffer from low birth weight, which […]

Skeletogenic Neural Crest Cells in Embryonic Development and Adult Regeneration of the Jaw

The goal of this proposal is to develop cell-based therapies that lead to the better healing of traumatic head injuries. Our first strategy will be to use genetics and embryology in zebrafish to identify factors that can convert human embryonic stem cells into replacement skeleton for the head and face. Remarkably, the genes and mechanisms […]

Derivation and Characterization of Myeloproliferative Disorder Stem Cells from Human ES Cells

Cancer is the leading cause of death for people younger than 85. High cancer mortality rates related to resistance to therapy and malignant progression underscore the need for more sensitive diagnostic techniques as well as therapies that selectively target cells responsible for cancer propagation. Compelling studies suggest that human cancer stem cells (CSC) arise from […]

VEGF signaling in adventitial stem cells in vascular physiology and disease

Coronary heart disease is the leading cause of death in the developed world. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries. Blockage of these arteries cut off supplies of nutrients and oxygen to the heart muscle, causing heart attacks, heart failure or sudden death. To […]

Mechanisms of chromatin dynamics at enhancers during ES cell differentiation

The human ES cells are euploid cells that can proliferate without limit and maintain the potential to differentiate into all cell types. Differentiation of human ES cells involves selective activation or silencing of genes, a process that involves not only combinatorial interactions between the cis-regulatory sequences and DNA binding transcription factors, but also post-translational histone […]