Program Type: Discovery
Reprogramming of human somatic cells back to pluripotent embryonic stem cells
The ability to dedifferentiate or reverse lineage-committed cells to pluripotent/multipotent cells might overcome many of the obstacles (e.g. cell sources, immunocompatibility and bioethical concerns) associated with using other ES and adult stem cells in clinical applications. With an efficient dedifferentiation process, it is conceivable that healthy, abundant and easily accessible somatic cells could be reprogrammed […]
Bioengineering technology for fast optical control of differentiation and function in stem cells and stem cell progeny
Embryonic stem (ES) cells potentially could provide clinically important replacement tissue for central nervous system (CNS) disease treatment, and regenerative medicine approaches involving ES cells have been suggested for common CNS disorders. But it has been difficult to produce the right kind of replacement tissues from ES cells because the “differentiation”, or cell-type specification process, […]
Noncoding RNAs in Cell Fate Determination
The human body is composed of thousands of cell types, which all came originally from embryonic stem cells. Although all these cell types have the same genetic blueprint, different genes are active in different cells in order to give each its distinctiveness. The process by which the genes remember whether they are in liver, brain, […]
Addressing the Cell Purity and Identity Bottleneck Through Generation and Expansion of Clonal Human Embryonic Progenitor Cell Lines
Human embryonic stem (hES) cells and induced pluripotent (iPS) cells, such as reprogrammed skin cells, offer the potential to revolutionize medicine because they can replicate indefinitely and become virtually any cell in the body. They therefore have the potential to provide a limitless source of cells to replace cells lost to injury (spinal cord, skin […]
In Utero Model to Assess the Fate of Transplanted Human Cells for Translational Research and Pediatric Therapies
nfants with inherited blood diseases (such as sickle cell anemia, thalassemia, bleeding disorders) or other inherited metabolic disorders can be identified early in development using sophisticated diagnostic tests. Currently, the treatment for many of these childhood illnesses may include bone marrow transplantation which is complicated by: (1) the toxicity associated with chemotherapy or radiation-based regimens […]
Curing Hematological Diseases
The primary aim of this project is to develop treatments for incurable diseases of the blood and immune system. X-linked Severe Combined Immunodeficiency (X-SCID) and Fanconi anemia (FA) are two blood diseases where mutations in a single gene results in the disease. XSCID, more commonly known as the “bubble boy” disease, is characterized by a […]
Developmental Candidates for Cell-Based Therapies for Parkinson’s Disease (PD)
Parkinson’s Disease (PD) is a devastating disorder, stealing vitality from vibrant, productive adults & draining our health care dollars. It is also an excellent model for studying other neurodegenerative conditions. We have discovered that human neural stem cells (hNSCs) may exert a significant beneficial impact in the most authentic, representative, & predictive animal model of […]
Enhancing healing via Wnt-protein mediated activation of endogenous stem cells
All adult tissues contain stem cells. Some tissues, like bone marrow and skin, harbor more adult stem cells; other tissues, like muscle, have fewer. When a tissue or organ is injured these stem cells possess a remarkable ability to divide and multiply. In the end, the ability of a tissue to repair itself seems to […]
Mouse Models for Stem Cell Therapeutic Development
Stem cells have tremendous potential for treating human diseases, as they have the unique capacity to develop into any cell type in the body and to proliferate indefinitely. The development of new therapies based on the transplantation of human stem cells (HuSC) into patients is a major focus of California researchers. A critical step prior […]
Maximizing the Safety of Induced Pluripotent Stem Cells as an Infusion Therapy: Limiting the Mutagenic Threat of Retroelement Retrotransposition during iPSC Generation, Expansion and Differentiation
The ability to convert human skin cells to induced pluripotent stem cells (IPSCs) represents a seminal break-through in stem cell biology. This advance effectively circumvents the problem of immune rejection because the patient’s own skin cells can be used to produce iPSCs. This exciting technology could accelerate treatments for a number of presently incurable diseases. […]