Program Type: Discovery
Development of Induced Pluripotent Stem Cells for Modeling Human Disease
Human embryonic stem cells (hESC) hold great promise in regenerative medicine and cell replacement therapies because of their unique ability to self-renew and their developmental potential to form all cell lineages in the body. Traditional techniques for generating hESC rely on surplus IVF embryos and are incompatible with the generation of genetically diverse, patient or […]
Generation of Pluripotent Cell Lines from Human Embryos
Human embryonic stem cells (hESCs) hold significant promise for regenerative medicine. In this application our goal is to derive hESC lines from pre-implantation embryos to generate a source of low passage lines that can be used in research and to develop the procedures required to generate a clinic grade cell-based product. In this application we […]
New Cell Lines for Huntington’s Disease
Huntington’s disease (HD) is a devastating neurodegenerative disease with a 1/10,000 disease risk that always leads to death. These numbers do not fully reflect the large societal and familial cost of HD, which requires extensive caregiving and has a 50% chance of passing the mutation to the next generation. Current treatments treat some symptoms but […]
Protein transduction of transcription factors: a non-genetic approach to generate new pluripotent cell lines from human skin.
More than 100,000 patients await for organ transplants nationwide this year. The ground-breaking discovery of new pluripotent human stem cell lines (iPS) derived from skin fibroblasts using a core of 3-5 transcription factors opens the door to patient-derived pluripotent stem cells and new approaches to organ and tissue replacement. Patient-derived stem cells could have an […]
An in vitro and in vivo comparison among three different human hepatic stem cell populations.
Because there is still considerable morbidity and mortality associated with the process of transplantation, and because more than a thousand people die each year while on the liver transplantation list, it is evident that improved and safer liver transplantation would be valuable, as would approaches that provide for an increased number of transplantations in a […]
Prospective isolation of hESC-derived hematopoietic and cardiomyocyte stem cells
The capacity of human embryonic stem cells (hESCs) to perpetuate themselves indefinitely in culture and to differentiate to all cell types of the body has lead to numerous studies that aim to isolate therapeutically relevant cells for the benefit of patients, and also to study how genetic diseases develop. However, hESCs can cause tumors called […]
Understanding hESC-based Hematopoiesis for Therapeutic Benefit
Hematopoietic stem cell transplantation is the treatment of choice for many hematologic malignancies, and it is used to treat an expanding number of congenital blood disorders. However, only ~30% of patients who can benefit from this treatment have a matched sibling that can serve as the ideal donor. While the national marrow donor program and […]
hESC-Derived Motor Neurons For the Treatment of Cervical Spinal Cord Injury
Cervical spinal cord injuries result in a loss of upper limb function because the cells within the spinal cord that control upper limb muscles are destroyed. The goal of this research program is to create a renewable human source of these cells, to restore upper limb function in both acute and chronic spinal cord injuries. […]
Human Embryonic Stem Cell Therapeutic Strategies to Target HIV Disease
AIDS is a disease that currently has no cure. It arises when the human immunodeficiency virus (HIV) infects certain types of blood cells. These cells would normally be used to fight infection, but instead are destroyed by the virus, leading to immunodeficiency. We have recently been able to induce the development of human embryonic stem […]
Mechanisms to maintain the self-renewal and genetic stability of human embryonic stem cells
Human embryonic stem cells (hESCs) are capable of unlimited self-renewal, a process to reproduce self, and retain the ability to differentiate into all cell types in the body. Therefore, hESCs hold great promise for human cell and tissue replacement therapy. Because DNA damage occurs during normal cellular proliferation and can cause DNA mutations leading to […]