Program Type: Discovery
Preclinical Model for Labeling, Transplant, and In Vivo Imaging of Differentiated Human Embryonic Stem Cells
The derivation and culture of human embryonic stem cells has provided new possibilities for treatment of a wide variety of human diseases because these cells have the potential to help regenerate and repair many types of damaged tissue. Diseases for which such cell-based treatments may be helpful include obstructive renal disease, a disorder for which […]
MEF2C-Directed Neurogenesis From Human Embryonic Stem Cells
Understanding differentiation of human embryonic stem cells (hESCs) provides insight into early human development and will help directing hESC differentiation for future cell-based therapies of Parkinson’s disease, stroke and other neurodegenerative conditions. The PI’s laboratory was the first to clone and characterize the transcription factor MEF2C, a protein that can direct the orchestra of genes […]
Generation of inner ear sensory cells from human ES cells toward a cure for deafness
Hearing loss is the leading birth defect in the United States with ~3 children in 1,000 born with partial to profound compromise of auditory function. Debilitating hearing loss is estimated to affect ~4% of people under 45 years of age, and 34% of those 65 years or over. A major cause of why acquired hearing […]
Improved hES Cell Growth and Differentiation
Human embryonic stem (hES) cells are pluripotent stem cells that can theoretically give rise to every cell type in the human body. Consequently, hES cells have enormous promise for the treatment of human disease. Specialized cell types derived from hES cells could be used to treat a wide variety of diseases and disorders including spinal […]
Regulated Expansion of Lympho-hematopoietic Stem and Progenitor Cells from Human Embryonic Stem Cells (hESC)
The clinical potential of human embryonic stem cells (hESC) for transplantation will be realized only when we can develop methods to control the process of tissue differentiation far more efficiently than is currently the case. From over 40 years of experience with adult stem cells, it is recognized that the growth of transplanted bone marrow […]
Regulated Expansion of Lympho-hematopoietic Stem and Progenitor Cells from Human Embryonic Stem Cells (hESC)
The clinical potential of human embryonic stem cells (hESC) for transplantation will be realized only when we can develop methods to control the process of tissue differentiation far more efficiently than is currently the case. From over 40 years of experience with adult stem cells, it is recognized that the growth of transplanted bone marrow […]
Human stem cell derived oligodendrocytes for treatment of stroke and MS
Strokes that affect the nerves cells, i.e., “gray matter”, consistently receive the most attention. However, the kind of strokes that affecting the “wiring” of the brain, i.e., “white matter”, cause nearly as much disability. The most severe disability is caused when the stroke is in the wiring (axons) that connect the brain and spinal cord; […]
Modeling Myocardial Therapy with Human Embryonic Stem Cells
Five million people in the U.S. suffer with heart failure, at a cost of $30 billion/year. Heart failure occurs when the heart is damaged and becomes unable to meet the demands placed on it. Unlike some tissues, heart muscle does not regenerate. Human embryonic stem cells grow and divide indefinitely while maintaining the potential to […]
Guiding the developmental program of human embryonic stem cells by isolated Wnt factors
Just like cells in a human embryo, embryonic stem cells have the potential to give rise to all cell types and tissues in a human body. That is why it is an exciting prospect to use these cells in tissue repair. But in order to do so, we have to understand how we can guide […]
Epigenetic gene regulation during the differentiation of human embryonic stem cells: Impact on neural repair
Human embryonic stem cells (hESCs) have the potential to become all sorts of cells in human body including nerve cells. Moreover, hESCs can be expanded in culture plates into a large quantity, thus serving as an ideal source for cell transplantation in clinical use. However, the existing hESC lines are not fully characterized in terms […]