Program Type: Discovery


Genetic dissection of mesodermal commitment to the hematopoietic fates.

Genetic dissection of mesodermal commitment to hematopoietic fates. Hematopoietic cell transplantation is the gold standard for cell-based therapy and is routinely used to treat a wide variety of blood disorders and cancer. A major limitation exists, however, in finding donors whose immune systems are compatible with those of the patients requiring transplantation. The recent creation […]

Oral and Craniofacial Reconstruction Using Mesenchymal Stem Cells

The overall goal of this proposal is to explore a new stem cell-based treatment for major defects in the orofacial regions resulted from burns, physical injuries, genetic diseases, cancers, infectious diseases, and recently, bisphosphonate-associated osteonecrosis of the jaw (BONJ), using the patient’s own stem cells obtained from the oral cavity known as orofacial mesenchymal stem […]

Reprogramming of human somatic cells back to pluripotent embryonic stem cells

The ability to dedifferentiate or reverse lineage-committed cells to pluripotent/multipotent cells might overcome many of the obstacles (e.g. cell sources, immunocompatibility and bioethical concerns) associated with using other ES and adult stem cells in clinical applications. With an efficient dedifferentiation process, it is conceivable that healthy, abundant and easily accessible somatic cells could be reprogrammed […]

Reprogramming of human somatic cells back to pluripotent embryonic stem cells

The ability to dedifferentiate or reverse lineage-committed cells to pluripotent/multipotent cells might overcome many of the obstacles (e.g. cell sources, immunocompatibility and bioethical concerns) associated with using other ES and adult stem cells in clinical applications. With an efficient dedifferentiation process, it is conceivable that healthy, abundant and easily accessible somatic cells could be reprogrammed […]

Bioengineering technology for fast optical control of differentiation and function in stem cells and stem cell progeny

Embryonic stem (ES) cells potentially could provide clinically important replacement tissue for central nervous system (CNS) disease treatment, and regenerative medicine approaches involving ES cells have been suggested for common CNS disorders. But it has been difficult to produce the right kind of replacement tissues from ES cells because the “differentiation”, or cell-type specification process, […]

Noncoding RNAs in Cell Fate Determination

The human body is composed of thousands of cell types, which all came originally from embryonic stem cells. Although all these cell types have the same genetic blueprint, different genes are active in different cells in order to give each its distinctiveness. The process by which the genes remember whether they are in liver, brain, […]

Addressing the Cell Purity and Identity Bottleneck Through Generation and Expansion of Clonal Human Embryonic Progenitor Cell Lines

Human embryonic stem (hES) cells and induced pluripotent (iPS) cells, such as reprogrammed skin cells, offer the potential to revolutionize medicine because they can replicate indefinitely and become virtually any cell in the body. They therefore have the potential to provide a limitless source of cells to replace cells lost to injury (spinal cord, skin […]

In Utero Model to Assess the Fate of Transplanted Human Cells for Translational Research and Pediatric Therapies

nfants with inherited blood diseases (such as sickle cell anemia, thalassemia, bleeding disorders) or other inherited metabolic disorders can be identified early in development using sophisticated diagnostic tests. Currently, the treatment for many of these childhood illnesses may include bone marrow transplantation which is complicated by: (1) the toxicity associated with chemotherapy or radiation-based regimens […]

Curing Hematological Diseases

The primary aim of this project is to develop treatments for incurable diseases of the blood and immune system. X-linked Severe Combined Immunodeficiency (X-SCID) and Fanconi anemia (FA) are two blood diseases where mutations in a single gene results in the disease. XSCID, more commonly known as the “bubble boy” disease, is characterized by a […]

Developmental Candidates for Cell-Based Therapies for Parkinson’s Disease (PD)

Parkinson’s Disease (PD) is a devastating disorder, stealing vitality from vibrant, productive adults & draining our health care dollars. It is also an excellent model for studying other neurodegenerative conditions. We have discovered that human neural stem cells (hNSCs) may exert a significant beneficial impact in the most authentic, representative, & predictive animal model of […]