Program Type: Discovery


RNA Analysis by Biosynthetic Tagging (RABT): a tool for the identification of cell type-specific RNAs

Advancing our understanding of stem cell biology often relies on answers to the following types of questions: What are the differences in gene expression between a stem cell and the “mature” cell (for example, a neuron or heart cell) made by the stem cell? Answers to such questions can lead to methods for directing stem […]

Regulation of Stem Cell Fate in Bioengineered Arrays of Hydrogel Microwells

Stem cell biology, since its inception 30 years ago, has been hindered by our limited ability to observe and direct the decisions of individual stem cells. In the case of adult tissue-specific stem cells, such as those from blood, muscle or pancreas, the numbers available for clinical use are extremely limited, as in tissue culture […]

Development of Suspension Adaptation, Scale-up cGMP Banking and Cell Characterization Technologies for hESC Lines

hESCs represent an important source of cell therapies in regenerative medicine and the study of early human development. A number of hESC-based therapies are nearing clinical trials. To bring these to clinical trials requires the scale-up production, or “banking”, of large numbers of the desired hESC cell. The current lack of large scale hESC culture […]

Optimization in the Identification, Selection and Induction of Maturation of Subtypes of Cardiomyocytes derived from Human Embryonic Stem Cells

Cardiovascular diseases remain the major cause of death in the western world. Stem and progenitor cell-derived cardiomyocytes (SPC-CMs) hold great promise for the myocardial repair. However, most of SPC-CMs displayed heterogeneous and immature electrophysiological phenotypes with substantial automaticity. Implanting these electrically immature and inhomogeneous CMs to the hearts would be arrhythmogenic and deleterious. Further optimization […]

Novel Tools and Technologies for Translational PET Imaging of Cell-based Therapies

One of the great promises of stem cell research is that doctors will find a way to isolate and modify patient’s stem cells so that they be reinjected into patients to treat their disease. Current examples include islet cell transplantation to treat diabetes, stem cells for treating heart failure, or engineered immune cells for treating […]

A MULTI-MODALITY MOLECULAR IMAGING SYSTEM (MRSPECT) FOR IN VIVO STEM CELL TRACKING

The stem cell research has started making many promising discoveries already. Future clinical trials will require that the location and number of such cells be tracked in live subjects, over long periods of time. Tracking of stem cells after administration is essential for a better understanding of their migrational dynamics that could be used to […]

The Stem Cell Matrix: a map of the molecular pathways that define pluripotent cells

Human embryonic stem cells (hESC) are being considered for a wide range of research and therapeutic uses. Cell therapy is the most challenging of the potential clinical applications and its success will depend on the ability to guide differentiation of hESC into clinically useful cell types. The ideal cell types would possess three features: the […]

Development of a novel technology for precise, efficient, and safe genetic modification of stem cells

Stem cells are unique among cell types found in the human body: These cells are pluripotent; that is, they can develop into any of the more than 200 cell types in the human body. A major goal of stem cell research is to develop treatments for patients who suffer from devastating and currently incurable conditions […]

AO Wide-Field Microscope

A deeper understanding of the biological mechanisms that govern stem cells requires detailed, real-time image analysis of living cells. Currently, conventional live microscopy techniques are ineffective at imaging features like the nucleus in the center of a cell, principally due to aberrations caused by imaging through cytoplasm, organelles and other molecules inside the cell. Similar […]

TAT Cell-Permeable Protein Delivery of siRNAs for Epigenetic Programming of Human Pluripotent and Adult Stem Cells

The rapid progress of embryonic stem cell, induced-pluripotent cell, and adult stem cell research opens the door to thousands of promising, new medical applications and discoveries. However, one of the major obstacles in translating these basic science discoveries into safe therapies for patients is the risk of acquiring mutations from viral and DNA vectors. Exposure […]