Program Type: Discovery


Synthetic Matrices for Stem Cell Growth and Differentiation

There is a critical need for new technologies to facilitate growth and differentiation of human embryonic stem cells (hESC) using clinically acceptable, animal-free reagents. In particular, most currently used culture conditions are not acceptable for standardized production of clinical grade cell products. We propose to develop novel, well-defined, synthetic extracellular matrices for growth and differentiation […]

Scaleup of Versatile, Fully Automated, Microfluidic Cell Culture System

We are proposing to optimize and scale up a highly advanced (microfluidic) cell culture system into manufacturable form. This system will allow researchers to: Identify stem cell culture and differentiation conditions Identify genes and small molecules effecting stem cell self-renewal and differentiation, and Identify genes and small molecules involving or effecting reprogramming of differentiated cells. […]

Microfluidic Platform for Screening Chemically Defined Conditions that Facilitate Clonal Expansion of Human Pluripotent Stem Cells

Human pluripotent stem cells (hPSCs) hold a great potential to treat many devastating injuries and diseases. However, current hPSC cloning still faces challenges in creating animal product-free culture conditions for performing genetic manipulation and induced differentiation of hPSCs for cell-based therapy. In order to obtain the ideal culture conditions for hPSC cloning, microfluidic technology can […]

Development of an hES Cell-Based Assay System for Hepatocyte Differentiation Studies and Predictive Toxicology Drug Screening

Drug-induced liver toxicity, including that from FDA-approved drugs, is the leading cause of liver failure in the US. One of the biggest road blocks to testing drug-induced liver toxicity prior to clinical studies or release of the drug into the market is the absence of a good model of human drug metabolism in the liver. […]

Directed Evolution of Novel AAV Variants for Enhanced Gene Targeting in Pluripotent Human Stem Cells and Investigation of Dopaminergic Neuron Differentiation

Human embryonic stem cells (hESCs) and induced pluripotent stem (iPS) cells have considerable potential as sources of differentiated cells for numerous biomedical applications. The ability to introduce targeted changes into the DNA of these cells – a process known as gene targeting – would have very broad implications. For example, mutations could readily be introduced […]

Medical School Loan Repayment Program

Our research focuses on developing new tools and models for the next generation of doctors and scientists in all specialties of regenerative medicine. The major obstacles in regenerative medicine are the limited number of pre-existing stem cells and the inability to regulate their proliferation. Our aim is to identify the mechanisms that regulate adult stem […]

Defining the Isoform-Specific Effects of Apolipoprotein E on the Development of iPS Cells into Functional Neurons in Vitro and in Vivo

GOALS We propose to determine the effects of different forms of apoE on the development of induced pluripotent stem (iPS) cells into functional neurons. In Aim 1, iPS cells will be generated from skin cells of adult knock-in (KI) mice expressing different forms of human apoE and in humans with different apoE genotypes. In Aim […]

Mechanisms Underlying the Responses of Normal and Cancer Stem Cells to Environmental and Therapeutic Insults

Adult stem cells play an essential role in the maintenance of tissue homeostasis. Environmental and therapeutic insults leading to DNA damage dramatically impact stem cell functions and can lead to organ failure or cancer development. Yet little is known about the mechanisms by which adult stem cells respond to such insults by repairing their damaged […]

Laying the groundwork for building a tooth: analysis of dental epithelial stem cells

To fix a broken car, the mechanic either repairs or replaces the defective part. Similarly, one of the most promising approaches physicians foresee for treating human disease and ameliorating the aging process is regenerative medicine. A major aim of this field is to restore function by repairing or replacing damaged organs. Scientists envision a day […]

Building Cardiac Tissue from Stem Cells and Natural Matrices

Congestive heart failure afflicts 4.8 million people, with 400,000 new cases each year. Myocardial infarction (MI), also known as a “heart attack”, leads to a loss of cardiac tissue and impairment of left ventricular function. Because the heart does not contain a significant number of multiplying stem, precursor, or reserve cells, it is unable to […]