Year 1
Considerable progress was made on transitioning cells and cell production methods from research-scale to translational/clinical scale. Specifically, Year 1 activities were focused on transitioning from research to pilot-scale cell production methods, and characterization of the animal amyotrophic lateral sclerosis (ALS) disease model. These activities were essential because cellular therapy development is a multi-stage process with increasing stringency over time in terms of the increased focus on the details of the methods, stringent requirements for reagents/materials, greater scale, and more thorough product characterization during the transition from early research to an approved cellular therapy.
During Year 1, small-scale embryonic stem cell (ESC) growth and differentiation methods previously developed for research at Life Technologies were further developed at a larger pilot-scale, which provided enough cells to perform early animal pre-clinical studies and cell characterization. In addition to the increased scale of cell production, where possible, research grade reagents and materials were substituted with reagents and materials that would be required or preferred for producing a cell therapy for use in humans [produced under Good Manufacturing Practices (GMP), non-animal origin, well characterized]. These conditions are not ideal for many ESC lines, and only 1 of the 4 starting ESC lines was able to adapt successfully to these culture conditions. To increase the number of potential clinical ESC candidate cell lines, we acquired 2 additional ESC lines, UCFB6 and UCSFB7 from the University of California, San Francisco. Development is ongoing to ensure the cell processing methods are robust and scalable for the increased cell numbers required for the large-scale animal studies in Year 2. Cells from the pilot-scale production are being subjected to deep sequencing as part of the development of molecular characterization methods that may provide future quality control assays.
During Year 1, further studies of a rat ALS disease model were performed to: 1) optimize cell injection methods; 2) improve characterization of disease onset and progression in the rat model; 3) evaluate the utility of behavioral and electrophysiology tests for following the disease; and 4) evaluate histology methods for measuring neuron damage and detection of implanted cells, which will be used to optimize the large-scale efficacy studies planned for Year 2. We discovered that several time-consuming analysis approaches for efficacy evaluation could be replaced by simpler, more cost effective approaches. Additionally, the Year 1 studies tested and ensured that the team could handle an aggressive cell implant schedule, twice daily immunosuppression, demanding behavioral and electrophysiology assessments, and extensive histology evaluations.