Year 2
Very good progress has been made in the last year on this project. We are attempting to address a great unmet medical need to develop effective therapies for human spinal cord injury (SCI). We aim to develop and optimize a pluripotent neural stem cell line for grafting to sites of spinal cord injury, and develop this line for clinical translation. Unlike other programs of stem cell therapy for SCI, we are transplanting neural stem cells directly into the injury site, in high numbers, and we observe very extensive growth of axons both into and out of the graft. The amount of axon growth in this model is substantially greater than that observed with other approaches to the injured spinal cord, including approaches currently in clinical trials. Accordingly, we believe that our approach provides a substantially greater opportunity to improve outcomes after SCI.
In the last year, we have identified a lead stem cell line for potential human translation, and validated its ability to engraft to the injured spinal cord. We have observed that human neural stem cells, grafted into mice and rats, exhibit a human time frame for maturation and growth: cells require at least one year to develop and mature. This knowledge is very important for planning human clinical trials.
Remaining work will characterize the long term safety and efficacy of these cells in rodent and large animal models of SCI.