Year 3

Patients with Parkinson’s disease have malfunctioning or dying dopaminergic (DA) neurons. Human embryonic stem cells can be differentiated into DA neurons for transplantation with the potential to cure this disease, yet the differentiation mechanism is not very clear. A nuclear hormone receptor named Nurr1 is found to regulate the differentiation process. To study the regulation mechanism, we proposed to genetically incorporate nonnatural amino acids into Nurr1 in stem cells, and use the novel properties of these amino acids to identify the interacting protein partners of Nurr1. Once these partners are discovered, effective protocols can be developed to generate high purity DA neurons for therapeutic purposes. In the past year, we figured out several mechanisms that prevent the efficient incorporation of nonnatural amino acids into proteins in stem cells. We now have developed new strategies to overcome these difficulties. In the meantime, we developed another complementary approach in order to detect unknown proteins that interact with Nurr1 during the differentiation process of stem cells. We are employing these new methods to identify Nurr1 interacting networks in stem cells.