Year 3
We initially discovered that mouse embryonic stem cell (ESC)-derived neural progenitor cells forced to express the transcription factor MEF2C were protected from dying and were also given signals to differentiate almost exclusively into neurons (J Neurosci 2008; 28:6557-68). Under the CIRM grant, we have investigated the role of MEF2C and consequences of its forced expression in neural differentiation of human ES cells, including identification of specific genes under MEF2C regulation. We have also used rodent models of Parkinson’s disease and stroke to evaluate the therapeutic potential of human ESC-derived neural progenitors forced to express active MEF2C (MEF2CA).
In the third year of the CIRM grant, we continued to refine our procedures for differentiating MEF2CA-expressing human ES cells growing in culture into neural progenitor cells (NPC) and fully developed neurons. We also investigated their electrophysiological characteristics and potential to develop into specific types of neurons. We found that not only do the MEF2CA-expressing NPCs become almost exclusively neurons, as we previously showed, but they also had a strong bias to develop into dopaminergic neurons, the type of neuron that dies in Parkinson’s disease. We also found that MEF2CA-expressing NPCs differentiated to maturity in culture dishes showed a wide variety of electrophysiological responses of normal mature neurons. We were able to record sodium currents and action potentials indicating that the neurons were capable of transmitting chemo-electrical signals. They also responded to GABA and NMDA (a glutamate mimic), which shows that the neurons can respond to the major signal-transmitting molecules in the brain.
Previously we showed that transplantation of the MEF2CA-expressing human ESC-derived NPCs into the brains of a rat model of Parkinson’s disease resulted in a much higher number of dopaminergic (DA) neurons and positive behavioral recovery compared to controls. We now report that evaluation of the MEF2CA-expressing cells showed a much higher expression level of a variety of proteins known to be important in DA neuron differentiation and that none of these cells become tumors or hyper proliferative. We have also transplanted NPCs into the brains of a rat stroke model. Our preliminary data analysis shows an improvement in the ability to walk a tapered beam in the rats transplanted with MEF2CA-expressing cells compared to controls. These results are evidence there may be a great advantage in the use of NPC expressing MEF2C for transplantation into various brain diseases and injuries.
We have also continued our investigations into the mechanisms of MEF2C activities in the hope of finding new drug targets to mimic it effects. We have identified interactive pathways in which MEF2C plays a role and found correlations between MEF2C expression levels and a variety of diseases. These will hopefully lead us to a better understanding of how to leverage our results to produce effective therapies for a broad spectrum of neurological diseases and traumas.