Project Objective: Proof of Concept
Direct reprogramming towards vascular progenitors for the treatment of ischemia
Angiogenesis or the generation of new blood vessels is a critical part of the normal healing process. Newly created vessels ensure the delivery of oxygen, nutrients, and specific repair signals to injured tissues. Indeed, even though additional repair mechanisms are required, such as replenishment of tissue-specific cell types, angiogenesis contributes to the healing of a […]
Identification of Novel Therapeutics for Danon Disease Using an iPS Model of the Disease
Autophagy is the cells mechanism for breaking down and recycling proteins. Danon disease is an inherited disorder of autophagy. Patients with this disease have major abnormalities in heart and skeletal muscle and generally die by the time they are in their 20s. Recently we used a new technology to turn skin cells from two patients […]
Tissue engineered cartilage from autologous, dermis-isolated, adult, stem (DIAS) cells
This study addresses the cartilage defects resulting from injuries or from wear-and-tear that can eventually degenerate to osteoarthritis. This is a significant problem that impacts millions and costs in excess of $65B per annum in the US alone. Addressing this indication successfully holds potential for halting the progression of cartilage damage before it destroys the […]
Human ES cell-derived MGE inhibitory interneuron transplantation for spinal cord injury
Transplantation of neuronal precursors into the central nervous system offers great promise for the treatment of neurological disorders including spinal cord injury (SCI). Among the most significant consequences of SCI are bladder spasticity and neuropathic pain, both of which likely result from a reduction in those spinal inhibitory mechanisms that are essential for normal bladder […]
Molecules to Correct Aberrant RNA Signature in Human Diseased Neurons
Approximately 5,600 people in the U.S. are diagnosed with ALS each year. The incidence of ALS is two per 100,000 people, and it is estimated that as many as 30,000 Americans may have the disease at any given time. There are no effective therapies of ALS to-date. Recent genetic discoveries have pinpointed mutations that lead […]
Regeneration of Functional Human Corneal Epithelial Progenitor Cells
Over 3.2 million people worldwide are bilateral blind from corneal diseases. Limbal stem cell deficiency (LSCD) has been recognized as a major cause, either primary or secondary, of significant visual loss and blindness in many common corneal disorders. A healthy, transparent ocular surface is made up of non-keratinized, stratified squamous epithelium that is highly differentiated. […]
Inhibitory Nerve Cell Precursors: Dosing, Safety and Efficacy
Many neurological disorders are characterized by an imbalance between excitation and inhibition. Our ultimate goal: to develop a cell-based therapy to modulate aberrant brain activity in the treatment of these disorders. Our initial focus is on epilepsy. In 20-30% of these patients, seizures are unresponsive to drugs, requiring invasive surgical resection of brain regions with […]
Stem Cell Therapy for Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (DMD) is the most common and serious form of muscular dystrophy. One out of every 3500 boys is born with the disorder, and it is invariably fatal. Until recently, there was little hope that the widespread muscle degeneration that accompanies this disease could be combated. However, stem cell therapy now offers that […]
Neural restricted, FAC-sorted, human neural stem cells to treat traumatic brain injury
Traumatic brain injury (TBI) affects 1.4 million Americans a year; 175,000 in California. When the brain is injured, nerve cells near the site of injury die due to the initial trauma and interruption of blood flow. Secondary damage occurs as neighboring tissue is injured by the inflammatory response to the initial injury, leading to a […]
Regeneration of Functional Human Corneal Epithelial Progenitor Cells
Over 3.2 million people worldwide are bilateral blind from corneal diseases. Limbal stem cell deficiency (LSCD) has been recognized as a major cause, either primary or secondary, of significant visual loss and blindness in many common corneal disorders. A healthy, transparent ocular surface is made up of non-keratinized, stratified squamous epithelium that is highly differentiated. […]