Project Objective: Research Insights


Forming the Hematopoietic Niche from Human Pluripotent Stem Cells

The clinical potential of pluripotent stem cells for use in regenerative medicine will be realized only when the process by which tissues are generated from these cells is significantly more efficient and controlled than is currently the case. Fundamental questions remain about the mechanisms by which pluripotent stem cells differentiate into mature tissue. The overall […]

Biological relevance of microRNAs in hESC differentiation to endocrine pancreas

There remains an urgent and critical need for a cell-based cure of diabetes, one of the most costly diseases in California. Islet transplantation with persistent immune suppression has shown promise in curing type 1 diabetes (TID). However, one major obstacle towards large scale implementation of this approach is the shortage of engraftable islets. Human ES […]

Induced Pluripotent Stem Cells for Tissue Regeneration

Induced pluripotent stem cells (iPSCs) have tremendous potential for patient-specific cell therapies, which bypasses immune rejection issues and ethical concerns for embryonic stem cells (ESCs). However, to fully harness the therapeutic potential of iPSCs, many fundamental issues of cell transplantation remain to be addressed, e.g., how iPSC-derived cells participate in tissue regeneration, which type of […]

Engineering microscale tissue constructs from human pluripotent stem cells

Tissues derived from stem cells can serve multiple purposes to enhance biomedical therapies. Human tissues engineered from stem cells hold tremendous potential to serve as better substrates for the discovery and development of new drugs, accurately model development or disease progression, and one day ultimately be used directly to repair, restore and replace traumatically injured […]

Niche-Focused Research: Discovery & Development of Hematopoietic Regenerative Factors

Bone marrow and peripheral blood transplantation utilizing blood stem cells can provide curative treatment for patients with cancers and non-cancerous diseases of the blood and immune systems. Such treatments can be curative because the stem cells contained within the bone marrow or peripheral blood of healthy donors are capable of replacing the entirety of the […]

Molecular Imaging for Stem Cell Science and Clinical Application

Stem cells offer tremendous potential to treat previously intractable diseases. The clinical translation of these therapies, however, presents unique challenges. One challenge is the absence of robust methods to monitor cell location and fate after delivery to the body. The delivery and biological distribution of stem cells over time can be much less predictable compared […]

Generation of functional cells and organs from iPSCs

The development of induced pluripotent stem cell (iPSC) technology may be the most important advance in stem cell biology for the future of medicine. This technology allows one to generate a patient’s own pluripotent stem cells (PSCs) from skin or blood cells. iPSCs can then be reprogrammed to multiply and produce high quality mature cells […]

Epithelial progenitors and the stromal niche as therapeutic targets in lung disease

Chronic lung disease is an enormous societal and medical problem in California and the nation as a whole, representing the third most likely cause of death. Treatment costs were $389.2 billion in 2011 and are expected to reach $832.9 billion in 2021 according to the Milken Institute. Chronic lung diseases cover a spectrum of disorders […]

Repair and regeneration of the nephron

Kidney function is essential for removing the wastes that result from normal cell function and maintaining water and salt balance in our internal tissues. These actions are carried out by roughly a million nephrons within the kidney that filter all the body’s blood roughly once every 1-2hours. The kidney also regulates other tissues controlling blood […]

The role of neural stem cells in cerebellar development, regeneration and tumorigenesis

Stem cells have the remarkable ability to renew themselves and to generate multiple different cell types. This allows them to generate normal tissues during development and to repair tissues following injury, but at the same time, renders them highly susceptible to mutations that can result in cancer. Only by understanding the signals that control growth […]