Therapeutic/Technology: Gene Therapy (All)


Extending Immune-Evasive Human Islet-Like Organoids (HILOs) Survival and Function as a Cure for T1D

Research Objective Determine optimal islet transplant conditions and systemic treatments that promote graft survival upon transplantation into immune-competent diabetic subjects. Impact Our proposal will optimize the generation and viability of an unlimited, reproducible source of human engineered islets for transplantation. Major Proposed Activities Demonstrate improved HILO graft survival with FGF1 coating Prolong grafted HILO survival […]

Preclinical development of an exhaustion-resistant CAR-T stem cell for cancer immunotherapy

Research Objective The expected outcome is an exhaustion-resistant CAR-T cell, which persists long-term in a functional progenitor T cell state in the tumor microenvironment and can be used for cancer immunotherapy. Impact CAR-T cells are effective in B cell cancer, but less than 50% of patients experience long-term disease control. Exhaustion-resistant CARs may provide long-term […]

RNA-directed therapy for Huntington’s disease

Research Objective We develop a novel adeno-associated viral (AAV) vector-delivered RNA-targeting therapeutic for elimination of toxic RNA causative of Huntington’s disease. Impact There are no disease-modifying therapies for Huntington’s disease. Our therapeutic, if successful, will be a first-in-class treatment for this invariably fatal neurodegenerative disorder. Major Proposed Activities In vitro studies of the RNA-targeting system […]

Transplantation of genetically corrected iPSC-microglia for the treatment of Sanfilippo Syndrome (MPSIIIA)

Research Objective This research will discover whether transplantation of stem cell-derived microglia can be used to treat Sanfilippo syndrome, a devastating and currently untreatable childhood neurological disease. Impact If successful, this research will identify a promising new therapeutic approach for Sanfilippo Syndrome and provide the first evidence that stem cell derived microglia could be used […]

Providing a cure for sphingosine phosphate lyase insufficiency syndrome (SPLIS) through adeno-associated viral mediated SGPL1 gene therapy

Research Objective AAV-SPL 2.0 is a gene therapy cure for SPLIS, a lethal childhood disorder of metabolism that causes kidney failure. Our gene therapy may also work in more common fibrotic (scarring) kidney diseases. Impact Our treatment may cure a rare but often fatal genetic disease (SPLIS) for which no specific treatment is available. It […]

Generating deeper and more durable BCMA CAR T cell responses in Multiple Myeloma through non-viral knockin/knockout multiplexed genome engineering

Research Objective We will use integrated gene editing techniques to develop a new CAR-T cell therapy for multiple myeloma treatment Impact Develop an improved CAR-T cell therapy for patients with refractory multiple myeloma and a new manufacturing strategy that circumvents the costs and inefficiencies of viral production. Major Proposed Activities Establish and optimize a CRISPR […]

Optimization of a gene therapy for inherited erythromelalgia in iPSC-derived neurons

Research Objective The goal of this grant is to develop a gene therapy for a rare painful disorder, Inherited Erythromelalgia (IEM). Impact There are currently no FDA approved drugs for IEM, which is caused by a gain-of-function mutation in a sodium channel, Nav1.7. We propose epigenetic repression of Nav1.7 to provide a cure for IEM. […]

New noncoding RNA chemical entity for heart failure with preserved ejection fraction.

Research Objective Modified synthetic noncoding RNA molecule Impact Heart failure with preserved ejection fraction Major Proposed Activities Lead optimization Perform extensive preclinical testing and select a therapeutic candidate. Develop and test preliminary potency assays based on mechanistic insights. Demonstration of injury-modifying bioactivity in a clinically-relevant human progenitor cell population. Optimize formulation and dosing for intravenous […]

Human iPSC-derived chimeric antigen receptor expressing macrophages for improved cancer treatment.

Research Objective These studies will produce a new CAR-targeted iPSC-derived macrophage-based cell therapy product for treatment of refractory malignancies such as ovarian cancer. Impact These studies eliminate a bottleneck in macrophage production and enable these cells to be engineered and manufactured in a standardized, off-the-shelf manner, rather than on a patient-specific basis. Major Proposed Activities […]

A universally applicable skin sheet for Dystrophic Epidermolysis Bullosa via next-generation gene editing, iPS cell technology and tissue engineering

Research Objective We will develop a cell therapy for a rare skin disease. Patient-derived iPS cells will be genetically corrected and differentiated into epithelial sheets to be grafted on skin wounds. Impact In this proposal we will develop a universal genetic correction strategy for all COL7A1 which will be a prerequisite for the commercial viability […]