Therapeutic/Technology: Gene Therapy, cell free


AAV9-Cas13 gene therapy for Angelman syndrome

Research Objective AAV9-Cas13 gene therapy for Angelman syndrome using a first-in-kind mechanism of action that will safely and permanently restore expression of endogenous UBE3A that is deficient in CNS neurons. Impact Angelman syndrome is a rare (1 in 15,000 births) neurogenetic disorder caused by loss of UBE3A in the brain, causing severe developmental delay, ataxia […]

Hypoxia-specific Production of Exosomes from iPSC-derivatives for Myocardial Repair

Research Objective A lead therapeutic candidate will be selected: 1) exosomes from hypoxia-injured iPSC-derived cardiomyocytes (iCMs), 2) exosomal miRNA cluster, and 3) siRNA inhibition of exosomal target gene, Notch3. Impact Effective targeted therapy to restore the injured and vulnerable myocardium is urgently needed to reduce the high mortality of HF patients. Promising discovery of iPSC […]

Development of a SYF2 antisense oligonucleotide (ASO) treatment for ALS

Research Objective We will develop an antisense oligonucleotide, or DNA therapy for diverse forms of amyotrophic lateral sclerosis (ALS). Impact ALS is fatal and incurable, and if successful, we will develop a treatment that slows or stops ALS progression across a broad range of patients. Major Proposed Activities Selection of the lead drug by testing […]

Genome Editing of Sinusoidal Endothelial Stem Cells for Permanent Correction of Hemophilia A

Research Objective Therapeutic candidate to cure hemophilia A is AAV-based genome editing vector that corrects the disease-causing mutation in the factor VIII gene in patient stem cells to develop a permanent cure. Impact Permanent correction of hemophilia A by editing mutations in the FVIII gene in stem cells. Develop a precise and efficient non-nuclease genome […]

Preclinical development of AAV vector-mediated in vivo hepatic reprogramming of myofibroblasts as a therapy for liver fibrosis

Research Objective An intravenously injectable virus that converts the scar cells responsible for liver cirrhosis into the cells that provide most of the liver’s function, thereby preventing or reversing liver failure. Impact The proposed research will develop a new therapy for liver cirrhosis, which can be cured by liver transplantation, but there are not enough […]

CRISPR/dCas9 mutant targeting SNCA promoter for downregulation of alpha-synuclein expression as a novel therapeutic approach for Parkinson’s disease

Research Objective Discovery of a novel therapeutic candidate for Parkinson’s disease which modifies gene expression using human stem cell-derived neurons to halt the neurodegenerative disease process. Impact Stopping the neurodegenerative process of Parkinson’s disease is a critical unmet medical need. Our approach is based on novel gene engineering technology that modifies expression of key target […]

Direct Cardiac Reprogramming for Regenerative Medicine

Research Objective To develop a gene therapy product to deliver cardiac reprogramming factors into the heart for regeneration of new heart muscle. Impact The proposed candidate would regenerate heart muscle for the 23 million adult and pediatric patients with heart failure, for whom there are currently no disease-modifying therapeutic approaches. Major Proposed Activities Successful conversion […]

CRISPR/Cas9 nanoparticle enabled therapy for Duchenne Muscular Dystrophy in muscle stem cells

Research Objective Gene correction of muscle stem cells Impact These studies will develop a gene editing based therapy for one of the most prevalent lethal childhood disorders called Duchenne Muscular Dystrophy. Major Proposed Activities To identify the best MSNP-CRISPR candidates for CRISPR/Cas9 plasmid delivery in vitro to muscle stem cells To identify the best MSNP-STEM […]

Targeting cancer stem cells with nanoparticle RNAi delivery to prevent recurrence and metastasis of ovarian cancer

Research Objective Our objective is to develop novel treatments for women with ovarian cancer, specifically treatments that target stem cells to reverse drug resistance. These will treat recurrent metastatic disease. Impact We aim to use nanoparticles to make ovarian cancer stem cells more drug sensitive, less invasive, and less likely to regrow tumors and metastasize. […]

Development of AS-241, an UNC13A Targeting Antisense Oligonucleotide (ASO) Treatment for ALS, for IND-enabling Studies

Translational Candidate AS-241, an antisense oligonucleotide Area of Impact Amyotrophic Lateral Sclerosis Mechanism of Action AS-241 targets the cryptic exon (CE) of UNC13A and suppresses CE inclusion during RNA splicing, inhibits nonsense-mediated decay, and increases full length mRNA and protein levels Unmet Medical Need To date, therapeutic options for ALS have been limited, and disease-modifying […]