Therapeutic/Technology: Technology
In Utero Model to Assess the Fate of Transplanted Human Cells for Translational Research and Pediatric Therapies
nfants with inherited blood diseases (such as sickle cell anemia, thalassemia, bleeding disorders) or other inherited metabolic disorders can be identified early in development using sophisticated diagnostic tests. Currently, the treatment for many of these childhood illnesses may include bone marrow transplantation which is complicated by: (1) the toxicity associated with chemotherapy or radiation-based regimens […]
Mouse Models for Stem Cell Therapeutic Development
Stem cells have tremendous potential for treating human diseases, as they have the unique capacity to develop into any cell type in the body and to proliferate indefinitely. The development of new therapies based on the transplantation of human stem cells (HuSC) into patients is a major focus of California researchers. A critical step prior […]
Maximizing the Safety of Induced Pluripotent Stem Cells as an Infusion Therapy: Limiting the Mutagenic Threat of Retroelement Retrotransposition during iPSC Generation, Expansion and Differentiation
The ability to convert human skin cells to induced pluripotent stem cells (IPSCs) represents a seminal break-through in stem cell biology. This advance effectively circumvents the problem of immune rejection because the patient’s own skin cells can be used to produce iPSCs. This exciting technology could accelerate treatments for a number of presently incurable diseases. […]
Ensuring the safety of cell therapy: a quality control pipeline for cell purification and validation
The clinical application of cell replacement therapy in the US is dependent on the FDA’s approval, and the primary objective of the FDA is to protect patients from unsafe drugs and procedures. The FDA has a specific mandate for human gene and cell therapy and since the unexpected deaths in early trials of gene therapy […]
Methods for detection and elimination of residual human embryonic stem cells in a differentiated cell product
Human embryonic stem cells (hESC), and other related pluripotent stem cells, have great potential as starting material for the manufacture of curative cell therapies. This is primarily for two reasons. First, by manipulating cues in their cell culture conditions, these cells can be directed to become essentially any desired human cell type (a property known […]
Developing induced pluripotent stem cells into human therapeutics and disease models
Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differentiate into all the cell types in the human body, and thus hold great promise for cell replacement therapy. However, one major problem for hESC-based therapy is that the cells derived from hESCs will be rejected by the recipient and can only be tolerated under […]
Using patient-specific iPSC derived dopaminergic neurons to overcome a major bottleneck in Parkinson’s disease research and drug discovery
The goals of this study are to develop patient-specific induced pluripotent cell lines (iPSCs) from patients with Parkinson’s disease (PD) with defined mutations and sporadic forms of the disease. Recent groundbreaking discoveries allow us now to use adult human skin cells, transduce them with specific genes, and generate cells that exhibit characteristics of embryonic stem […]
Human Immune System Mouse models as preclinical platforms for stem cell derived grafts
A major obstacle to stem cell based therapies is the immune response of the patient to stem cell derived tissue, which can be recognized as foreign and attacked by the patient’s immune system. T cells orchestrate immune responses and are “educated” about self versus foreign in an organ called the thymus. It may be possible […]
Role of Innate Immunity in hematopoeitic stem cell-mediated allograft tolerance
The research proposed in this project has very high potential to identify new medications to boost the natural ability of stem cells to prevent rejection of transplanted organs. This is a very important goal, because patients that receive a life-saving transplanted organ must take toxic medications that increase their risk for cancer and serious infections. […]
Engineered immune tolerance by Stem Cell-derived thymic regeneration
Stem cell therapies have the potential to transform medicine by allowing the regeneration of tissues or organs damaged by disease or trauma. In order for stem cell therapies to proceed, it will be essential that the regulation of immune responses to the stem cell derived tissues be achieved. While the function of the immune system […]