Use of human iPS cells to study spinal muscular atrophy
Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders that cause infant mortality. SMA is caused by loss of the Survival of Motor Neuron (SMN) protein,…
Studying neurotransmission of normal and diseased human ES cell-derived neurons in vivo
Stem cells, including human embryonic stem cells, provide extraordinary new opportunities to model human diseases and may serve as platforms for drug screening and validation. Especially with the ever-improving effective…
Viral-host interactions affecting neural differentiation of human progenitors
Human cytomegalovirus (HCMV) is the major cause of birth defects, almost all of which are neuronal in origin. Approximately 1% of newborns are infected, and of the 13% that are…
Correlated time-lapse imaging and single cell molecular analysis of human embryo development
We understand little about human development especially at the earliest stages. Yet human developmental biology is very important to stem cell biology and regenerative medicine for two reasons: 1) Understanding…
Discovery of mechanisms that control epigenetic states in human reprogramming and pluripotent cells
The CIRM Basic Biology Award III was developed to support basic research that enables the realization of the full potential of human stem cells and reprogrammed cells for therapies and…
Molecular basis of human ES cell neurovascular differentiation and co-patterning
During human development, autonomic neurons align with and pattern alongside blood vessels. This patterning allows the autonomic nervous system to control the vascular function a phenomenon that is very useful…
Investigation of synaptic defects in autism using patient-derived induced pluripotent stem cells
Autism spectrum disorders (ASD) are a group of neurodevelopmental diseases that occur in as many as 1 in 150 children in the United States. Three hallmarks of autism are dysfunctional…
Functional characterization of mutational load in nuclear reprogramming and differentiation
One of the most potentially powerful aspects of regenerative medicine is stem cell therapy. In this therapy, healthy tissues derived from stem cells will be implanted into patients with damaged…
Phenotypic Analysis of Human ES Cell-Derived Muscle Stem Cells
We study human muscle development, and are actively investigating potential cell-based therapies for the treatment of degenerative muscle diseases, such as muscle dystrophy. This project will define the pathway that…
- Go to the previous page
- 1
- …
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- …
- 51
- Go to the next page