Therapeutic/Technology: Technology


The EphrinB2/EphB4 axis in regulating hESC pluripotency and differentiation

Human embryonic stem cells (hESC) have an inexhaustible ability to divide and renew, and under the appropriate conditions, differentiate and change into any cell type in the body. This balance between pluripotency and self-renewal is a complex and carefully choreographed response of the hESC to local microenvironmental cues. Understanding the molecular regulators of this balance, […]

Differentiation of Human Embryonic Stem Cells into Urothelium

Augmentation or replacement of the bladder is often necessary for the treatment of adults with bladder cancer and children with spinal cord injury or spina bifida. Current surgical techniques utilize segments of intestine or stomach as a substitute for bladder wall. Use of intestinal segments is associated with many complications including infection, stones, salt imbalance, […]

Novel Mechanism in Self-Renewal/Differentiation of Human Embryonic Stem Cells

The most prominent feature of the stem cell is its pluripotent capacity to differentiate into various types of cells. The importance of the orchestrated interplay between molecular regulators has been demonstrated in the maintenance of self-renewing pluripotent property or the initiation of differentiation. Advance in the generation of the induced pluripotent stem cells (iPSCs) have […]

The function of YAP in human embryonic stem cells

Embryonic stem cells have the potential to generate all tissue types that could be used for regenerative medicine, such as replacement of damaged neurons, replenish of insulin secreting beta cells, or generation of blood cells. The discovery of in vitro reprogramming of somatic cells (normal cells in our body) into induced pluripotent stem cells (iPS, […]

Maturation of Human Oocytes for SCNT and Embryonic Stem Cell Derivation

A major issue for tissue and cell therapy in regenerative medicine is the immune rejection of grafts originated from a non-compatible individual. Mature eggs contain factors essential for the re-programming of cell nuclei from patients to allow the establishment of patient-compatible pluripotent stem cells for the treatment of diverse degenerative diseases. Although up to half […]

MGE Enhancers to Select for Interneuron Precursors Produced from Human ES Cells

There are now viable experimental approaches to elucidate the genetic and molecular mechanisms that underlie severe brain disorders through the generation of stem cells, called iPS cells, from the skin of patients. Scientists are now challenged to develop methods to program iPS cells to become the specific types of brain cells that are most relevant […]

Endothelial cells and ion channel maturation of human stem cell-derived cardiomyocytes

Cardiovascular diseases remain the major cause of death in the western world. Stem and progenitor cell-derived cardiomyocytes (SPC-CMs) hold great promise for myocardial repairs. However, most SPC-CMs displayed heterogeneous and immature electrophysiological (EP) phenotypes with variable automaticity. Implanting these electrically immature and inhomogeneous CMs into hearts might carry arrhythmogenic risks. Human embryonic stem cell-derived cardiomyocytes […]

Role of the microenvironment in human iPS and NSC fate and tumorigenesis

Multipotent Neural Stem Cells (NSC) can be derived from adult central nervous system (CNS) tissue, embryonic stem cells (ESC), or iPSC and provide a partially committed cell population that has not exhibited evidence of tumorigenesis after long term CNS transplantation. Transplantation of NSC from these different sources has been shown by multiple investigators in different […]

Self-renewal and senescence in iPS cells derived from patients with a stem cell disease

The discovery of induced pluripotent stem (iPS) cell technology promises to revolutionize our understanding of human disease and to allow the development of new cellular therapies for regenerative medicine applications. The ability to reprogram a patient’s fibroblasts to iPS cells creates the opportunity to expand human cells with a specific genetic defect and to study […]

Molecular Characterization and Functional Exploration of Nuclear Receptors in hiPSCs

Our lab is known for its discovery of the family of nuclear hormone receptors (NHRs) that use vitamins/hormones to control genes and thereby regulate embryonic development, cell growth, physiology and metabolism. Of 48 known NHRs, we discovered that a unique subset of 38 receptors are expressed in adipose-derived human induced pluripotent stem cells (hiPSCs). The […]