Modeling Parkinson's Disease Using Human Embryonic Stem Cells

Modeling Parkinson's Disease Using Human Embryonic Stem Cells

Funding Type: 
SEED Grant
Grant Number: 
RS1-00331
Award Value: 
$701,060
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
Cell Line Generation: 
Embryonic Stem Cell
Status: 
Closed
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 

Year 1

Parkinson’s disease (PD) is the most frequent neurodegenerative movement disorder caused by damage of dopamine-producing nerve cells (DA neuron) in patient brain. The main symptoms of PD are age-dependent tremors (shakiness). There is no cure for PD despite administration of levodopa can help to control symptoms. <br> <br> Most of PD cases are sporadic in the general population. However, about 10-15% of PD cases show familial history. Genetic studies of familial cases resulted in identification of PD-linked gene changes, namely mutations, in six different genes, including α-synuclein, LRRK2, uchL1, parkin, PINK1, and DJ-1. Nevertheless, it is not known how abnormality in these genes cause PD. Our long-term research goal is to understand PD pathogenesis at cellular and molecular levels via studying functions of these PD-linked genes and dysfunction of their disease-associated genetic variants.<br> <br> A proper experimental model plays critical roles in defining pathogenic mechanisms of diseases and for developing therapy. A number of cellular and animal models have been developed for PD research. Nevertheless, a model closely resembling generation processes of human DA nerve cells is not available because human neurons are unable to continuously propagate in culture. Nevertheless, human embryonic stem cells (hESCs) provide an opportunity to fulfill the task. hESCs can grow and be programmed to generate DA nerve cells. In this study, we propose to create a PD model using hESCs. <br> <br> During the funding period, we have generated a number of human ES cell lines overexpressing α-synuclein and two disease-associated α-synuclein mutants. These cells are being used to determine the cellular and molecular effects of the disease genes on human ES cells and the PD affected dopaminergic neurons made from these cells. We have found that normal and disease α-synucleins have little effect on hESC growth and differentiation. We will continue to investigate roles of this protein in modulating PD affected dopaminergic neurons. Completion of this study will allow us to study the pathological mechanism of PD and to design strategies to treat the disease.<br>

© 2013 California Institute for Regenerative Medicine