Year 2
In Year 02 of this grant, we have continued to refine the techniques developed for producing nerve cells from human embryonic stem cells (hESC). Central to our grant proposal is the expression of an active form of a protein called MEF2C, which we insert into the stem cells at a young age. MEF2C is a transcription factor, which is a molecule that regulates how RNA is converted to a protein. MEF2C regulates the production of proteins that are specifically found in neurons, and it plays an important role in making a stem cell into a nerve cell. Specific improvements this year in culture conditions have resulted in our being able to direct a much higher percentage of hESCs into precursors of nerve cells, and it is at this stage that the cells are most appropriate for insertion of MEF2C. Following this, we can transplant the stem cells, destined to become nerve cells, in to the brain in rodent models of stroke and Parkinson’s disease. We have also made very good progress in producing dopaminergic nerve cells, the specific type of cell that dies in Parkinson’s disease. In addition, our improved methods are completely free of any animal products, so they represent a step forward in developing cells as a treatment for human diseases.
Building upon these advances in our techniques, we have transplanted cells into a rat model of Parkinson’s disease and shown that a large percentage of the cells become dopaminergic nerve cells in the brain. Additionally, rats receiving these cell transplants show greater improvements in motor skills compared to rats receiving similar cells without the inserted MEF2C factor. These findings complement our results presented in the first year’s progress report showing that transplantation of these MEF2C-expressing cells into a mouse model of stroke resulted in less damage to the brain. Together these results indicate the utility and versatility of these cells “programmed” by expression of the inserted MEF2C gene.
Finally, in Year 02 we report on our efforts to discover the mechanism by which the MEF2C gene prevents cell death and drives stem cells to become nerve cells. We have performed microarray analyses, which measure the expression levels of various genes, e.g., how much of each protein is produced from a gene. This approach includes 24,000 of the possible ~30,000 gene sequences expressed in human cells and tissues. These experiments were performed on stem cells with the inserted MEF2C gene just as the cells were making the decision to become a nerve cell. We observed a decrease in the activity of several genes that are known to make stem cells proliferate (divide and multiply), rather than becoming a differentiated nerve cell. This finding is consistent with the known role of MEF2C, which causes cells to stop proliferating and start differentiating into nerve cells. Without insertion of MEF2C into the stem cells, they mostly continue proliferating. We also saw that many genes, which are not expressed in mature nerve cells, were coordinately down regulated. These results may suggest a new role of MEF2C as a factor for shutting down gene expression, thereby helping to promote the formation of new nerve cells. We are continuing our investigations into the mechanism of MEF2C actions in neuronal differentiation and function as well as our transplantation experiments in stroke and Parkinson’s disease models in the coming year.